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Abstract. Exception handling is a very popular technique for incorporating 
fault tolerance into software systems. However, its use for structuring 
concurrent, distributed systems is hindered by the fact that the exception 
handling models of many mainstream object-oriented programming 
languages are sequential. In this paper we present an aspect-based 
framework for incorporating concurrent exception handling in Java 
programs. The framework has been implemented in AspectJ, a general 
purpose aspect-oriented extension to Java. Our main contribution is to show 
that AspectJ is useful for implementing the concerns related to concurrent 
exception handling and to provide a useful tool to developers of distributed, 
concurrent fault-tolerant applications. 

1. Introduction 
Exception handling [8] is a well-known technique for incorporating fault tolerance [2] 
into software systems. An exception handling system (EHS) offers control structures that 
allow developers to define and raise exceptions, indicating the occurrence of an error, 
and exception handlers, responsible for putting the system back into a coherent state. 
Handling contexts are regions where the same exception types are treated in the same 
way. When an exception is raised, the underlying EHS interrupts the normal processing 
and transfers control to an appropriate exception handler. If no appropriate handler is 
available, the exception is signaled, or propagated, to an outer context, usually the caller 
of the operation where it was raised. 

 Various modern object-oriented programming languages include EHS’s. Although 
some of these languages natively provide constructs for concurrent programming, in all of 
them exception handling is purely sequential.  Some authors [3] argue that special features 
for involving many concurrent objects in exception handling are so difficult to develop 
and use that only sequential exception handling should be employed.  In spite of this, 
concurrent (or coordinated) exception handling [4] is a powerful tool for structuring 
large, distributed, and concurrent  software systems [18,21] and means for mitigating its 
inherent complexity are required. 

 Aspect-oriented programming (AOP) [14]  has appeared recently as a means for 
modularizing systems that present crosscutting concerns. A crosscutting concern can 
affect several units of a software system and usually cannot be modularized by traditional 
object-oriented design techniques. It has been argued elsewhere [16] that exception 
detection and handling are crosscutting concerns that can be better modularized by the use 
of aspect-oriented techniques. However, works on the subject which employ AOP have 



  

focused solely on the sequential EHS’s available in programming languages such as Java 
[5], C++ [11], and C# [10].   

 Although the model of Java for exception handling is representative of many 
object-oriented programming languages, it is not well-suited for exception handling in 
concurrent systems. Java does not prescribe adequate rules for propagation of exceptions 
signaled by a participant of a group of threads cooperating in order to achieve a common 
goal. For instance, in Java, if a participant is unable to handle an exception, its thread is 
simply killed. This may produce incorrect behavior, such as inconsistent results and 
deadlocks. Furthermore, it is not possible to associate handlers to elements that are 
meaningful to the concurrent execution of the group of objects. Romanovsky and Kienzle 
[17] argue that problems such as these are due to the fact that exception handling issues 
are being considered separately from those of system structuring. The authors suggest that 
exception handling should have a natural integration with constructs for concurrent 
execution. 

 In this paper, we describe an approach to implementing an aspect-based 
framework that complements the EHS of Java with coordinated exception handling. This 
framework, which we call ACE (Aspect-based Coordinated Exception handling), was 
implemented in AspectJ [13], a general purpose aspect-oriented extension to Java.  

 Our goal is twofold: First, we want to analyze the benefits and disadvantages of 
using aspects to build a framework for coordinated error recovery, instead of relying on 
an exclusively object-oriented implementation [23]. Second, we want to provide support 
for the construction of reliable object-oriented systems with requirements such as 
concurrency and distribution.  

 This paper is organized as follows. Section 2 gives a brief overview of AspectJ. 
Section 3 describes the approach we employ for coordinated exception handling. Some 
background knowledge on sequential exception handling is assumed. Section 4 presents 
the design and implementation of ACE. Section 5 rounds the paper and presents some 
ideas for future work. 

2. AspectJ Overview 
AspectJ [13] is a general purpose aspect-oriented extension to Java. It extends Java with 
constructs for picking specific points in the program flow, called join points, and 
executing pieces of code, called advice, when these points are reached. Join points are 
used to capture crosscutting concerns, that is, concerns that affect several different 
program units and can not be modularized by traditional object-oriented techniques. A 
typical example of crosscutting concern is logging. The implementation of this concern 
must be scattered across all the modules in a system, because some contextual information 
must be gathered in order for the recorded information to be useful. Other common 
examples of crosscutting concerns include profiling and authentication. 

 AspectJ adds a few new constructs to Java, in order to support the selection of 
join points and the execution of advice in these points. A pointcut picks out certain join 
points and contextual information at those join points. Join points selectable by pointcuts 
vary in nature and granularity. Examples include method call, method execution, field 
access, and class instantiation. A pointcut may be formed by the combination of various 
different join points selected only under specific conditions.  



  

 Advice are pieces of code that are executed when a join point is reached. These 
may be executed before, after, or around the selected join point. In the latter case, 
execution of the advice may potentially alter the flow of control of the application, and 
replace the code that would be otherwise executed in the selected join point. 

 The language also allows programmers to modify the static structure of a program 
by means of inter-type declarations. Inter-type declarations can introduce new members 
in a class or interface, such as methods and fields, or modify the relationships between 
types.  

 Aspects are units of modularity for crosscutting concerns. They are similar to 
classes, but may also include pointcuts, advice, and inter-type declarations. The 
following code snippet presents a simple aspect.  
 01: public aspect SimpleAspect { 
      02:   public void Participant.exampleMethod() { ... } 
      03:   pointcut methodCallsFromParticipants(Participant p1): 
      04:       call(* Participant.exampleMethod(..)) && this(p1); 
 05:   before(Participant p1): methodCallsFromParticipants(p1){ 
      06:        System.out.println(“method called”);}                       
 07: } 
In the aspect above, line 2 presents an inter-type declaration that adds the method 
exampleMethod() to the type Participant. If the latter is an interface, the new 
method is added to both interface and implementing classes. Lines 3 and 4 present a 
pointcut that selects calls to exampleMethod(). This pointcut has one argument of type 
Participant, corresponding to the caller of the method (this(p1)). It selects calls 
to the exampleMethod() method, defined by the type Participant 
(Participant.exampleMethod(..)). The method may have any return type (as 
indicated by the “*” symbol) and take any parameters. Line 5 defines an advice that is 
executed before the join points selected by the pointcut in line 3. This advice simply 
prints the message “method called” on the screen (line 6). 

 Aspects are associated to pure Java code by means of a process called weaving. 
Therefore, the tool responsible for performing weaving is called weaver. 

3. Action-Oriented Exception Handling 
In most programming languages, exception handling is inherently associated with system 
structuring concepts [17]. For instance, Java exception handling contexts are blocks of 
statements within method declarations and exceptions are objects defined by classes 
extending the class Exception. The exceptions that a method may signal define exit 
points for its execution (similarly to its result) that are only used when an error occurs. If 
an exception is raised within a method and no handlers for that exception are available, 
the exception is propagated to the caller method.    

 In this paper, we use the concept of action to structure the concurrent execution of 
software systems. An action consists of a set of participants, units of computation such as 
threads or processes, that cooperate in order to achieve a common goal. The concept of 
Coordinated Atomic Actions (CA actions) [22] is employed to structure fault-tolerant 
concurrent systems in an action-oriented manner.  CA actions provide a conceptual  
framework for dealing with different kinds of concurrency and achieving fault-tolerance 
by extending and integrating two complementary concepts: atomic actions [4] and ACID 



  

transactions [9]. Atomic actions are used to control cooperative concurrency and to 
implement coordinated error recovery. ACID transactions guarantee consistent access to 
shared objects. 

 
Figure 1. A CA action with three participants and a nested CA action. 

 A CA action consists of a set of participants cooperating inside it and a set of 
objects accessed by them (Figure 1). In a CA action, participants access shared objects 
that have the ACID properties. A CA action may terminate normally, in which case it 
produces a normal outcome and commits transactions on shared objects. If one or more 
exceptions are raised by action participants during action execution, all the participants 
are involved in coordinated exception handling. If two or more exceptions are 
concurrently signaled, an exception resolution scheme is used to combine these 
exceptions into a single one that represents all the exceptions signaled. If handling is 
successful, the action completes normally. Otherwise, an exception is propagated and 
responsibility for recovery is passed to the caller of the action. In this case, transactions 
on all shared objects are aborted. Actions may be nested in order to define different 
exception handling contexts. In the example of Figure 1, a nested action Action2 is created 
within the action Action1.    

4. Framework Design 

ACE was built with the goal of complementing the EHS of Java with action-oriented 
exception handling, more specifically, with the concept of CA actions. In order to achieve 
this goal and to produce a reusable implementation, framework development has been 
guided from the beginning by the following design directives. 

The concept of action should be explicit to application programmers. Application 
code based on ACE should employ the concept of action explicitly. This approach is 
adopted by the exception handling mechanism proposed by Garcia et al [7]. As mentioned 
in Section 3, exception handling is closely related to system structure and, in the case of 
concurrent exception handling, with constructs related to concurrent execution. Trying to 
make action-oriented exception handling transparent to application code may have a 
negative impact on system maintenance and understandability. 

Framework hotspots should be object-oriented. Framework users should only have to 
deal with object-oriented concepts. Although the framework is implemented as a 
combination of aspects, classes, and interfaces, application programmers should not need 
to know AspectJ or anything related to aspect-oriented programming, in order to use it. 
This directive makes framework usage easier for Java programmers and users of other 
object-oriented reusable implementations of coordinated exception handling. 

 The imp lementation of ACE consists of five main concerns related to the basic 



  

requirements of action-oriented exception handling and to some important non-functional 
requirements. The “core” framework comprises two concerns: action structuring (Section 
4.1) and coordinated exception handling (Section 4.2). The remaining three concerns 
implement non-functional requirements: distribution (Section 4.3), preemptive abortion 
(Section 4.4), and transaction interface. The following subsections describe these points 
in detail, except for transaction interface, which is addressed elsewhere [15, 19].  In 
order to better assess our approach, throughout this section, we compare ACE to the 
purely object-oriented framework devised by Zorzo and Stroud [23] for building 
dependable multiparty interactions. The authors have used this framework, which we call 
DMI in the rest of this section, to implement the concept of CA actions.  

4.1. Action Structuring 

The action structuring concern makes it possible to organize concurrent systems as actions 
where participants cooperate in order to achieve a certain goal.  In our approach for 
action structuring, participants are built by implementing the Participant interface. 
This interface defines only one method, execute(), that implements the basic 
functioning of the participant. It takes as argument an object of type Transactional 
which is shared by all action participants. The Transactional interface is defined by 
ACE and used for accessing objects in a transactional manner. Implementations of this 
interface should be provided by framework users.  

 Actions are represented by the Action interface, which extends Participant. 
This interface and a ready-to-use implementation are provided by ACE and implement 
the basic mechanisms for action structuring.  Implementation of the action structuring 
concern is complemented by an aspect, ActionStructuring. By means of inter-type 
declarations, this aspect makes Participant a subtype of Runnable, the interface 
provided by Java for defining objects that run in their own threads. Furthermore, it adds a 
new method to Participant, run(), that is called when a thread is started and is 
responsible for invoking execute() in each participant.  

 ActionStructuring is also responsible for managing references between 
actions and their participants. The following pointcut is used for this means. It selects all 
calls to the addParticipant() method, defined by Action.  

 01:  pointcut participantAddition(Action cp, String id,  
 02:     Participant part):      target(cp) && args(id, part)  && 
      03:   execution(* *..Action.addParticipant( 
      04:     String,Participant)); 

The addParticipant() method includes a new participant in an action. The pointcut 
above captures the moment in which this method is executed, as well as some contextual 
information. This information consists of (i) the Action object on which the method was 
invoked (target(cp)), and (ii) the identifier for the participant being added, as well as 
the participant itself (args(id, part)) (lines 1 and 2). When this pointcut is reached, 
an advice is executed after it, setting cp as the action part belongs to. This information 
is stored by Participant in a new field introduced by an inter-type declaration. 

 Creation and execution of an action is very simple. The following code snippet 
creates an action a1, comprising two participants, p1 and p2, and executes it. 
 01: Participant p1 = new ParticipantImpl(); 



  

 02: Participant p2 = new ParticipantImpl(); 
 03: ActionFactory fac = ActionFactory.getInstance(); 
 04: Action a1 = fac.createAction(“a1”, 2000); 
 05: Transactional shared = new TransactionalImpl(“An action”); 
 06: a1.addParticipant(“Participant1”, p1);  
 07: a1.addParticipant(“Participant2”, p2); 
 08: a1.execute(shared); 

Lines 1 and 2 create two participants, p1 and p2. Line 4 creates a new action with 
identifier a1 and which will wait at most 2000ms for participants to complete their 
execution. Actions are started by calling the execute() method on the action object 
(line 8). This method starts each participant in a new thread, passing the shared objects 
(line 5) as arguments to each of them.  

Discussion 

Part of the ActionStructuring aspect could be implemented as a class from which all 
participants would inherit. We have avoided this approach, however, because Java only 
allows single inheritance and user applications might require participants to extend a 
certain class. Moreover, it is argued by some authors [6, 12] that code inheritance 
promotes very strong coupling between classes, and that interfaces, together with 
aggregation, should be used whenever possible. In our approach, all the extra 
functionalities required by concurrent exception handling that would otherwise be 
implemented in a superclass are provided by aspects.  

 The use of aspects for implementing this concern helped making ACE easier to 
use, since participant classes defined by user applications need only to implement an 
interface. Furthermore, our aspect-based implementation completely encapsulates thread 
management-related issues. For instance, in the DMI framework, the threads on which 
each participant will be executed must be explicitly created and started by framework 
users. In spite of this, the aforementioned benefits could also be achieved by employing 
wrappers [6] for participants, in a purely object-oriented solution. These wrappers 
would be responsible for executing participants in new threads and maintaining 
references to the object representing the action. Hence, the aspect-based implementation 
did not present advantages over existing object-oriented solutions. 

4.2. Coordinated Exception Handling 

This concern enriches action structuring with concurrent exception handling. It is 
implemented by the CoordinatedExceptionHandling aspect. This aspect requires 
that an exception handler class be created for each class defining a participant, in a given 
application. Exception handler classes implement the ExceptionHandler interface, 
which defines a single method, handleExceptions(), responsible for handling one or 
more exceptions. 

 The CoordinatedExceptionHandling aspect defines a pointcut, 
participantExecution, that intercepts all calls to the execute() method of objects 
of type Participant that are not of type Action. Two advice are associated with this 
pointcut. The first one creates, for each participant in an action, an instance of the 
corresponding exception handler class and associates this object with the participant. If 
no exception handler class is available or instantiation fails, an  empty exception handler 
that simply re-throws any exceptions received is associated to the participant. Participant 



  

and exception handler classes are matched by adopting a naming convention to their 
definition. 

 The other advice associated to the participantExecution pointcut catches 
and records any exceptions signaled by participants. The following code snippet presents 
part of this advice. 
 01: void around(Participant p) : participantExecution(p) { 
 02:      p.setExceptionalResult(null); 
     03:      try { 
      04:            proceed(p); 
 05:      } catch (Exception e) { 
 06:         p.setExceptionalResult(e); } 
 07: } 

The proceed() (line 4) statement is defined by AspectJ and can only be used in 
around advice. It resumes the execution of the intercepted code (in this example, the 
execute() method of Participant) and, after it finishes, returns to the advice, in the 
line following the proceed() statement. In the example above, if no exceptions are 
raised, execution is finished with no additional behavior being introduced. Otherwise, the 
exception is caught and stored in the participant itself, by calling the 
setExceptionalResult() (line 6). This method is introduced in Participant by 
an inter-type declaration. 

 CoordinatedExceptionHandling also defines a pointcut, 
actionExecution, that intercepts calls to the execute() method of objects of type 
Action. The following code snippet presents an advice associated to this pointcut. 
 01: void around(Action cp)    
 02:        throws Exception : actionExecution(cp) { 
 03:     try { 
 04:          proceed(cp); 
 05:          this.performExceptionHandlingIfNecessary(cp); 
 06:     } catch (Exception e) { 
 07:          cp.setActionExceptionalResult(e); 
  08:         throw e; 
 09:     } 
 10: } 

The performHandlingIfNecessary() method (line 5) called after the 
proceed()statement (line 4) checks if any of the participants signaled an exception 
during its execution. If none did, the method returns and the action terminates. Otherwise, 
it collects all the exceptions signaled by action participants and initiates exception 
resolution. Many different schemes are possible for exception resolution. The one 
adopted by ACE, in conformance to Java´s EHS, assumes that exceptions are defined by 
classes and chooses the most specific exception class that is a supertype of the types of 
all exceptions signaled by participants.  

 Figure 2 presents a simple exception class hierarchy used to illustrate how 
exception resolution works in ACE.  If, during the execution of an action, two participants 
simultaneously signal exceptions of types E3 and E4, exception resolution will create a 
new exception of type E5, since it is the most immediate superclass of both E3 and E4. If, 
on the other hand, exceptions of types E, E3, and E4 are signaled at the same time, the 
resolved exception will be of type E, because it is a superclass of both E3 and E4, and 



  

because we assume that the superclass relation is reflexive. 
 
 
 
 
 
 
 
 

  After exception resolution finishes, the resolved exception is delivered to all 
participants and exception handling is initiated. For each participant, a new thread is 
created and the handleExceptions() method is called on the associated exception 
handler. This method takes the resolved exception as argument. Furthermore, the 
exceptions signaled by the participants during normal execution are also supplied as 
additional contextual information.  Exception handling terminates normally if the 
participants do not signal any exceptions, while handling the resolved exception. 
Otherwise, a FailureException is signaled, indicating that the action as a whole has 
failed and system state may be inconsistent.  

Discussion 

The implementation of coordinated exception handling by an aspect did not require any 
modifications to the code of the action structuring concern. Implementing similar features 
in a purely object-oriented language would either require the use of code inheritance, the 
solution adopted by the DMI framework, which we reject, or the construction of 
additional wrappers. Both cases require either the application code or the implementation 
of the action structuring concern to be modified. Therefore, the aspect-based solution 
promotes better separation of concerns.  

 When an exception is raised, it is useful to collect some information regarding the 
context in which it was raised. This contextual information is then made available to 
exception handlers, in order to increase the effectiveness of exception handling. Relevant 
information usually includes the values of local variables declared within the raising 
method. Unfortunately, it was not possible to collect this contextual information with the 
current version of AspectJ (1.1), since it does not allow the definition of pointcuts related 
to local variables. 

4.3. Distribution 

ACE has been devised with the goal of supporting development of large scale fault-
tolerant object-oriented distributed systems. However, action structuring and coordinated 
exception handling concerns implicitly assume that all the participants of an action share 
the same address space and processing unit. This conflict between goal and assumptions 
is resolved by the distribution concern.  We have used Java RMI [5] as the underlying 
distribution technology. 

First Attempt: Aspects 

In order to introduce the distribution concern, we began by implementing distribution for 
server-side objects. We first tried the approach described by Soares et al [19] for adding 

 

 

 

 

Figure 2. A simple exception class hierarchy. 
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distribution to object-oriented systems by means of aspects. First, a new interface, 
DistributedParticipant, was created. This interface defines all the methods 
implemented by participants that may be accessed remotely. The methods in this interface 
should specify the RemoteException exception in their throws clauses because Java 
requires it from all methods that might be called remotely. DistributedParticipant 
extends Remote, the interface used by RMI to indicate that an object is remote, and 
includes both the methods defined by the Participant interface and the methods added 
to Participant by inter-type declarations. We then created a new aspect, 
Distribution, and made Participant a subtype of DistributedParticipant 
by means of an inter-type declaration. 

 This approach did not work, however, because classes defining remote objects 
must directly implement their remote interfaces.  The solution described above works in 
the example application presented by Soares et al [19] because the classes defining 
remote objects implement the remote interface directly.  

 In the implementation of the distribution concern, the implementation classes are 
not known beforehand (because these are application-specific participants). In order to 
bypass the limitation described in the previous paragraph, we specified an inter-type 
declaration stating that all implementations of the Participant interface should also 
implement the interface DistributedParticipant. In this manner, classes defining 
remote objects would directly implement the remote interface. This is defined as follows. 
 01: declare parents: (Participant+ && !Participant) 
 02:         implements DistributedParticipant; 

This solution works fine when no aspects define inter-type declarations affecting 
Participant. However, this is not the case for our implementations of the action 
structuring and coordinated exception handling concerns. Hence, an alternative solution 
should be found.  

A Solution Based on Aspects and an OO Design Pattern 

We have adapted the work of Alves and Borba [1] to introduce distribution in ACE. This 
work proposes a design pattern, called Distributed Adapters Pattern (DAP), for 
implementing distribution in layered systems. This pattern isolates distribution-related 
code in two classes, called distributed adapters. Our implementation of distributed 
adapters defines five roles: local interface, local object, remote interface, client-side 
adapter, and server-side adapter. 

 The local interface specifies services to be made remote. In ACE, 
Participant, including and all the methods added to it by means of inter-type 
declarations, is a local interface. Instances of classes implementing the local interface are 
called local objects. The remote interface DistributedParticipant defines the 
same methods as the local interface, but the exception RemoteException is specified in 
the throws clause of each of them, since they will be called remotely. The client-side 
adapter is defined by the DistributedClient class. It implements the local interface 
and maintains a remote reference to the server-side adapter. The client-side adapter 
makes distribution transparent to clients by delegating method invocations received from 
them to the server-side adapter. The server-side adapter is defined by the 
DistributedParticipantImpl class. It implements the remote interface and 
maintains a reference to the local object. This adapter delegates received remote method 



  

invocations to the local object. 

 The problem with using the distributed adapters pattern in a purely object-
oriented manner is that adapter creation must be invoked explicitly by application code, 
even if factories [6] are used to hide the actual instantiation process. We have employed 
aspects to try to alleviate this limitation of the object-oriented approach. A new aspect 
has been created, DistributionWithDAP, that localizes the solution to this problem. 
Our approach is divided in two parts: server-side and client-side distribution.  

Server-side Distribution 

A simple implementation pattern adopted by many distributed applications created with 
Java RMI consists in placing the code responsible for instantiating and publishing remote 
objects in the main() method of one or more server classes. In our approach, we assume 
that this pattern is adopted by framework users. However, instead of creating distributed 
objects and publishing them, the implementation of such methods should only instantiate 
the local objects to be made remote. The DistributionWithDAP aspect checks, for 
each instantiated local participant, if a corresponding remote participant has been 
published. This task is performed by a before advice associated to the callToMain 
pointcut, which intercepts calls to the main() method of a participant. The following 
code snippet presents part of this advice. 
 01: try { 
 02:   String addr = addresses.getProperty(participantId); 
 03:   if(addr!=null && addr.trim().length() > 0) { 
 04:     Remote r = Naming.lookup(addr); 
 05:     toBePublished[i] = false; 
 06:   } 
 07: }catch(NotBoundException nbe) { toBePublished[i] = true; } 

The address for one of the participants, addr, is obtained (line 2) by means of a list of 
properties loaded at aspect initialization. If a participant has already been published at 
addr (line 4), it should not be published again (line 5). Otherwise, a 
NotBoundException is raised and caught, indicating that the participant was not 
published yet (line 7).  

 The other advice associated to the callToMain pointcut complements the one 
presented above and binds unpublished remote participants to the supplied identifier, 
after the execution of the main() method. Remote participants are created when 
participant classes are instantiated. A pointcut, callToConstructor, selects all calls 
to constructors of classes implementing the Participant interface. An advice creates 
objects of type DistributedParticipant when callToConstructor is reached. 
The following code snippet presents this advice. 
 01: void around(Participant p) : callToConstructor(p) { 
 02:   proceed(p); 
 03:   if(!alreadyInstantiated(p)) { 
 04:     DistributedParticipant dpi = null; 
      05:     dpi = new DistributedParticipantImpl(p); 
 06:     storeDistributedParticipant(dpi); 
 07:   }          
 08: } 

First, the participant is created (line 2). The check in line 3 avoids the creation of more 



  

than one object of type DistributedParticipant for the same participant. This may 
happen due to calls to superclass constructors. In line 5, the distributed participant is 
actually created and in line 6 it is stored, so that it can be published later. 

Client-Side Distribution  

Transparency at the client-side is achieved by guaranteeing that remote references to 
distributed objects are acquired as if they were local. Our approach consists of requiring 
that local instances of the remote participants be created at the client-side (as if it were 
not a distributed application), intercepting the moment in which a local participant is 
added to an action, obtaining the remote reference corresponding to the local object being 
added, and adding the remote reference, instead of the local one.  

 The participantAddition pointcut defined by the aspect 
ActionStructuring intercepts calls to the addParticipant() method of the 
Action interface. Hence, we moved this pointcut to an abstract aspect and made both 
DistributionWithDAP and ActionStructuring extend this aspect.  A new advice, 
associated to participantAddition, was then added to DistributionWithDAP. 
The code for this advice is presented below. 
 01: void around(String id, Participant p, Action ac) :  
 02:     participantAddition(id, p, ac) { 
 03:   String addr = addresses.getProperty(id); 
 04:   try { 
 05:     Remote r = Naming.lookup(addr); 
 06:     if(!validParticipant(r)) proceed(id, p, ac); 
 07:     else proceed(id, new DistributedClient(  
      08:         (DistributedParticipant)r), ac); 
 09:   } catch(Exception e) { proceed(id, p, ac); }  
 10: } 

 The identifier of the participant being added is used to obtain the address of the 
corresponding remote object (line 3). This address is used to obtain the remote reference 
(line 5). If it is not possible to obtain a valid remote reference, the local participant is 
used instead (line 6). Otherwise, a new client-side adapter of type 
DistributedClient is created to encapsulate the remote reference. This adapter is 
then added to the action as a new participant (lines 8 and 9). If any error occurs during 
this process, the local participant is used (line 9). 

Discussion 

The implementation of the distribution concern described in this section is clearly 
superior to the purely object-oriented version. Complete transparency to application code 
could be achieved due to the use of aspects. In order to use the distributed version,  only a 
small amount of Java code responsible for creating the distributed objects is required. 
Furthermore, application code used to build distributed applications makes no references 
to distribution-related issues. Hence, if a distributed application needs to be used in a 
local setting, no modifications are required. It is simply a matter of not weaving the 
DistributionWithDAP aspect. 

 Comparing our approach to the one presented by Soares et al [19] is difficult 
because we have not evaluated the use of aspects together with distributed adapters in 
more general contexts. Although the solution by Soares et al could not be employed to 



  

implement distribution in ACE, we are still not aware of all the limitations of our own 
approach. Hence, claiming that one is more or less general than the other would be 
inadequate.  

 The main cause for the difficulties outlined in this section is the fact that the 
current version of AspectJ (1.1) does not support the addition of new exceptions to the 
throws clause of a method.  Hence, it was necessary to define another remote interface 
for distributed participants. This problem has been reported elsewhere [15, 19] and an 
extension to AspectJ that effectively solves it has been suggested [19]. 

4.4. Preemptive Abortion 

When an exception is signaled by one of the participants of an action, all the other 
participants should abort their executions so that exception handling can take place. This 
makes execution faster and does not allow errors to spread throughout the system. 
Usually, implementations of CA actions based on Java use the features provided by the 
language for thread interruption, in order to implement participant abortion. This is the 
solution adopted by the DMI framework.   

 The problem with Java´s features for thread interruption is that they do not 
actually guarantee that a thread will be interrupted. Thread interruption is requested by 
invoking a method that marks the thread as interrupted. Actual interruption only occurs if 
an interrupted thread blocks waiting for locks or I/O operations.  In order to guarantee that 
a participant will not go on executing when it should abort, we have implemented an 
aspect, PreemptiveAbortion, that aborts the execution of a participant almost 
immediately.  

 Participants of an action should be aborted when at least one of them has signaled 
an exception. As described in Section 4.2, any exception signaled by a participant is 
recorded by calling the setActionExceptionalResult() method. The pointcut 
storingRaisedExceptions selects all invocations to this method. The following 
advice, associated to this pointcut, is responsible for notifying the other action 
participants that their executions should be aborted.  
 01: void around(Participant p, Exception e) :  
 02:     storingRaisedException(p, e) { 
 03:   proceed(p, e); 
 04:   Action ac = p.getEnclosingAction(); 
 05:   notifyParticipants(ac, p); 
 06: } 

First, the signaled exception is recorded (line 3). The Action object corresponding to 
the action of which p (line 1) is a participant is then obtained by calling the 
getEnclosingAction() method (line 4). Finally, all the participants within the action 
ac (line 4) are notified (line 5). 

 Preemptive abortion is implemented by checking if, at any moment during the 
execution of a participant, it was notified that it should abort. The following pointcut 
selects all the statements within the execute() method of a class that implements 
Participant, but not Action. 
 01: pointcut participantsExecuteMethod(Participant p):  
 02:   withincode(* *..Participant+.execute(..)) && target(p) && 
 03:   !withincode(* *..Action+.execute(..));       



  

Actual abortion is implemented by a simple advice, associated to the pointcut above, 
which checks, after each statement, if execution should be aborted. In case it should, this 
advice raises a special runtime exception, AbortionException. 

Discussion 

The implementation of the preemptive abortion concern nicely showcased the 
possibilities of using aspect-oriented programming together with object-oriented 
programming. It would not be feasible to implement this concern transparently to user 
applications without employing AspectJ, since it requires intercepting all the statements 
in a method body. This level of granularity is too low for typical solutions for 
interception, such as wrappers and proxies [5]. 

 Since the PreemptiveAbortion aspect uses inter-type declarations to 
introduce some new methods in Participant, the implementation of the distribution 
concern needed to be extended in order to accommodate these changes. This could be 
achieved, however, without modifying any of the aspects, classes, or interfaces 
implementing either distribution or preemptive abortion. A new aspect, 
DistributedPreemptiveAbortion, was created which complements the client and 
server adapters with the new methods introduced by PreemptiveAbortion.  

5. Conclusions 

In this paper, we have described ACE, an aspect-based framework for implementing 
coordinated exception handling in distributed object-oriented systems. Our main 
contribution was to assess the adequacy of using AspectJ to implement a reusable 
infrastructure for coordinated exception handling. To the best of our knowledge, all the 
works published on the use of aspects to structure exception handling refer exclusively to 
sequential exception handling. Moreover, we have compared ACE to a purely object-
oriented approach to implementing coordinated exception handling. Strong and weak 
points of both our approach and AspectJ have been pointed out. 

 The aspect-based implementation of the action structuring concern did not present 
advantages over an object-oriented one, mainly due to the design directives described in 
Section 4. In spite of this, our results lead us to conclude that our aspect-based reusable 
implementation for coordinated exception handling is superior to a purely object-oriented 
one. Coordinated exception handling, distribution, and preemptive abortion have been 
designed so that these concerns can be added to an action-structured application in a non-
intrusive manner. This level of transparency could not be achieved by employing only 
object-oriented techniques, such as design patterns.  

 In order to assess our framework from a usability viewpoint, we intend to build a 
large case study based on ACE, employing different communication technologies, such as 
Enterprise Javabeans [20]. This will allow us to better understand its advantages and, 
most of all, its limitations. Furthermore, it will clarify how our design decisions influence 
the overall framework usability and provide suggestions for features to be added in the 
future. 

 Another future work consists of extending ACE with features useful for building 
component-based systems. This is an ongoing work that is in its initial stages. We are 
currently studying the implications of using an aspect-based framework such as ACE for 



  

building applications whose computational model requires black-box visibility. This 
poses an interesting challenge, since source code for software components is usually 
unavailable and the current version of AspectJ does not support bytecode weaving. 
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