
A Modular Rewriting Semantics for CML

Fabricio Chalub, Christiano Braga

Universidade Federal Fluminense

Abstract. This paper presents a modular rewriting semantics (MRS) specifi-
cation for Reppy’s Concurrent ML (CML), based on Peter Mosses’ modular
structural operational semantics specification for CML. A modular rewriting se-
mantics specification for a programming language is a rewrite theory in rewrit-
ing logic written using techniques that support the modular development of the
specification in the precise sense that every module extension isconservative.
We show that the MRS of CML can be usedto interpretCML programs using
the rewrite engine of the Maude system, a high-performance implementation of
rewriting logic, andto verify CML programs using Maude’s built-in LTL model
checker. It is assumed that the reader is familiar with basic concepts of struc-
tural operational semantics and algebraic specifications.

1. Introduction

Rewriting logic is a logical framework [14] which can represent in a natural way many
different logics, languages, operational formalisms and models of computation. Hav-
ing different high-performance implementations [2, 5, 8], including the Maude system,
RWL can be used to create powerful analysis tools for programming languages, such as
JavaFAN [7], a rewriting logic-based analysis tool for Java programs. Modular rewriting
semantics (MRS) [4, 17] is a novel technique for the modular specification of program-
ming languages semantics in rewriting logic. A MRS specification is a rewrite theory in
rewriting logic developed according to some techniques that supports modular definitions,
that is, each moduleextensionbeing a conservative one.

MRS has a close relation with Mosses’ modular structural operational semantics
(MSOS) [22]. This is due to the fact that structural operational semantics has a direct
representation in rewriting logic [12, 3, 28, 17, 4] and that MRS and MSOS use a similar
technique to achieve modularity based on the encapsulation of the semantic information.
Moreover, MRS builds on MSOS insights with new techniques to achieve modularity and
reuse of programming languages semantics specifications. In [16, 17] the second author
and Jośe Meseguer propose a semantics-preserving transformation from MSOS to MRS
with a formal proof of the bisimulation between the models of MSOS and MRS.

Reppy’s Concurrent ML (CML) [26], is an extension of Milner’s Standard ML
[19] with concurrency features. Both languages have formal semantics and have several
implementations [11, 27, 13, 1] including several different tools, such as [24, 23].

The objective of this paper is twofold: (i) to define a MRS for CML; and (ii) to
show how CML programs can be executed and model checked in rewriting logic using the
MRS of CML and the Maude system. The MRS of CML is the result of the application of



the semantics-preserving translation between MSOS and MRS, developed by the second
author and Meseguer, to Mosses’ MSOS specification of CML [20].

This paper is organized as follows. Section 2 gives the necessary background in
rewriting logic and the modular rewriting semantics techniques. Section 3 presents the
modular rewriting semantics of CML. Section 4 presents some example executions and
model checking of CML programs using Maude and the MRS of CML. We conclude this
paper in Section 5 with final remarks.

2. Rewriting Logic and Modular Rewriting Semantics

2.1. Rewriting Logic and Modularity Requirements

By a rewriting semantics for a programming languageL we mean a rewrite theoryRL =
(Σ, E, φ, R), where the programs and semantic entities associated toL are specified by the
equational theory(Σ, E), and where the operational semantics ofL is formally specified
by the rewrite rulesR. The notion ofmodularityis defined in the context of an incremental
specification, where syntax and corresponding semantic axioms are introduced for groups
of related features. That is, modularity is a property of semantic definitions oflanguage
extensions. In the following paragraphs, assume that we have defined the semantics of a
language fragmentL0 by means of a rewrite theoryRL0, and the semantics of a language
extensionL1, with L0 ⊆ L1, by means of another rewrite theoryRL1 .

The most basic and obvious modularity requirement ismonotonicity: there is a
theory inclusionRL0 ⊆ RL1. Monotonicity means that we do not need toretract earlier
semantic definitions in a language extension. Monotonicity is not easy to get. For ex-
ample, standard SOS specifications are typically nonmonotonic and therefore unmodular,
as illustrated in the introductory section; that is, often many SOS rules forL0 have to be
redefinedin order to extendL0 toL1 [22].

A second natural modularity requirement isground conservativity: for any ground
Σ0-termst, t′ ∈ TΣi,k (the set ofk-kinded groundΣi terms) we have, (i)E0 ` t = t′ ⇔
E1 ` t = t′, (ii) RL0 ` t −→ t′ ⇔ RL1 ` t −→ t′. Ground conservativity means that
new semantic definitionsdo not alterthe semantics of previous features on the previously
defined language fragments. The issue then is findingmethodsensuring that incremental
rewriting semantics definitions of programming languages aremodular in the sense of
satisfying the above requirements.

MRS uses pairs, calledconfigurations; the first component is theprogram text,
and the second arecord whose fields are the differentsemantic entitiesassociated to
a program’s computation. We can specify configurations in Maude with the following
membership equational theory (a Maude functional module importing theRECORDmod-
ule, shown later):

fmod CONF is protecting RECORD .
sorts Program Conf .
op <_,_> : Program Record -> Conf [ctor] .

endfm

The moduleCONFis declared using the syntaxfmod . It first includes the module
RECORDin protectingmode, that is, adding no more data (“no junk”) and no new equalities



(“no confusion”) to records. Then the sortsProgram andConf are declared using syntax
sorts . Finally, the mixfix operator< , > is declared using syntaxop. Thector attribute
specifies that this operation is aconstructorfor sortConf .

The first key modularity technique isrecord inheritance, which is accomplished
through pattern matchingmoduloassociativity, commutativity, and identity. Features
added later to a language may necessitate adding new semantic components to the record;
but the axioms of older features can be given once and for all in full generality: they will
apply just the same with new components in the record. The Maude specification of the
equational theory of records is as follows.

fmod RECORD is
sorts Index Component Field PreRecord Record .
subsort Field < PreRecord .

op null : -> PreRecord [ctor] .
op _,_ : PreRecord PreRecord -> PreRecord [ctor assoc comm id: null] .
op _:_ : [Index] [Component] -> Field [ctor] .
op {_} : [PreRecord] -> [Record] [ctor] .
op duplicated : [PreRecord] -> [Bool] .

var I : Index . vars C C’ : Component . var PR : PreRecord .

eq duplicated((I : C), (I : C’), PR) = true .
cmb {PR} : Record if duplicated(PR) =/= true .

endfm

A Field is defined as a pair ofIndex and aComponent ; illegal pairs will be of
kind [Field] . A PreRecord is a possibly empty (null ) multiset of fields, formed with
the union operator, which is declared to beassociative(assoc ), commutative(comm),
and to havenull as itsidentity(id ). Maude will then apply all equations and rulesmodulo
such equational axioms [5]. Note the conditional membership (cmb) defining aRecord as
an “encapsulated”PreRecord with no duplicated fields.

Record inheritancemeans that we can always consider a record with more fields
as a special case of one with fewer fields. For example, a record with an environment
component indexed byenv and a store component indexed byst can be viewed as a
special case of a record with just the environment component. Matching modulo asso-
ciativity, commutativity, and identity supports record inheritance, because we can always
use an extra variablePRof sortPreRecord to matchany extra fields the record may have.
For example, the functionget-env extracting the environment component can be defined
by eq get-env(env : E:Env, PR:PreRecord) = E . and will apply to a record with
any extra fields that are matched byPR.

The second key modularity technique is the systematic use ofabstract interfaces.
That is, the sorts specifying key syntactic and semantic entities areabstract sortssuch
that: (i) they only specify theabstract functionsmanipulating them, that is, a givensig-
nature, or interface, of abstract sorts and functions;no axiomsare specified about such
functionsat the level of abstract sorts; (ii) in a language specification noconcretesyntac-
tic or semantic sorts are ever identified with abstract sorts: they are always either specified
assubsortsof corresponding abstract sorts, or are mapped to abstract sorts bycoercions; it
is only at the level of such concrete sortsthataxiomsabout abstract or auxiliary functions



are specified.

This means that we make no a priori ontological commitments as to the nature
of the syntactic or semantic entities. It also means that since the only commitments ever
made happen at the level ofconcrete sorts, one remains forever free to introduce new
meaning and structure in a language extension.

Systematic use of the above two new techniques will ensure that the rewriting
semantics of any language extensionL0 ⊆ L1 is always modular, that is, that it meets the
two requirements explained in Section 2.1, provided that: (i) the only rewrite rules in the
theoriesRL0 andRL1 are semantic rules

〈f(t1, · · · , tn), u〉 −→ 〈t′, u′〉 if C,

whereC is the rule’s condition,f , is a language feature, e.g.,if-then-else , u and
u′ are record expressions andu contains a variablePR of sort PreRecord standing for
unspecified additional fields and allowing the rule to match by record inheritance; (ii)
the following information hidingdiscipline should be followed inu, u′, and any record
expression appearing inC: besides any record syntax, only function symbols appearing
in theabstract interfacesof some of the record’s fields can appear in record expressions;
any auxiliary functions defined in concrete sorts of those field’s components should never
be mentioned; and (iii) the semantic rules of each programming language featuref should
all be defined in thesametheory, that is, either all are inRL0 or all inRL1 .

2.2. Relationship with Modular SOS

In this section we briefly discuss on the need of controlling rewriting steps in rewriting
logic in order to represent the so-called “small step” specifications. For a complete dis-
cussion on the relationship with MSOS we refer to [17].

There are two main techniques for the specification of transition rules in opera-
tional semantics: structural (or “small-step”), proposed by Plotkin [25] and natural (or
“big-step”), proposed by Kahn [10]. Therefore, in the context of representing an opera-
tional semantics specification in rewriting logic it is important to be able to control the
number of stepsof rewrites in the conditions of a rule. Note that in a rewrite rule

Q −→ Q′ if P1 −→ P ′
1 ∧ · · · ∧ Pn −→ P ′

n

the rewritesPi −→ P ′
i in the conditions are considerably more general: they can have

zero, one, or more steps of rewriting because the rewriting relation is reflexive and tran-
sitive in rewriting logic. (Due to space limitations, we refer to [14] for the complete
calculus.) The point is that, by definition, in rewriting logicall finitary computations are
always derivable as sequents.Thus, to be able to control the rewrite steps in MRS specifi-
cations the following has to be done: (i) The moduleCONFis extended to a system module
(rewrite theory):

mod RCONF is extending CONF .
op {_,_} : [Program] [Record] -> [Conf] [ctor] .
op [_,_] : [Program] [Record] -> [Conf] [ctor] .



vars P P’ : Program . vars R R’ : Record .
crl [step] : < P, R > => < P’, R’ > if { P, R } => [ P’, R’ ] .

endm

(ii) Each semantic rewrite rule is of the form,

{t, u} −→ [t′, u′] if {v1, w1} −→ [v′
1, w

′
1] ∧ · · · ∧ {vn, wn} −→ [v′

n, w
′
n] ∧ C (1)

wheren ≥ 0, andC is a (possibly empty) equational condition involving only equations
and memberships. Any such application of thestep rule exactly mimics a one-step
rewrite with a rule of the form of Equation 1.

3. Modular Rewriting Semantics of CML
Standard ML (SML) is a general purpose language that has functional, imperative, and
exception handling constructions among other features. SML is strongly typed with static
bindings. Concurrent ML (CML) is an extension of SML with concurrency primitives
added. This section presents a modular rewritingdynamicsemantics of a significant sub-
set of CML, based on Peter Moses’ MSOS specification as described in [20]. Therefore
type checking and type inference issues will not be addressed in this paper. Of course,
MRS could also be used to specify the static semantics for CML following, for instance,
the same approach in [20]. It is worth mentioning that the MRS of CML is correct w.r.t.
Mosses’ MSOS of CML, since our specification is produced as a result of the system-
atic application of the semantics-preserving translation from MSOS to MRS to Mosses’
MSOS of CML.

Unfortunately the complete specification can not be presented due to space limita-
tions; it can be obtained in full at the addresshttp://www.ic.uff.br/˜cbraga/losd/

specs/cml.maude . Therefore, this section is organized as follows. For three language
fragments, namely, constant declarations (Section 3.1), variable assignment (Section 3.2)
and process synchronization (Section 3.3), we: (i) show the CML syntax; (ii) give the
intuitive semantics for the language fragment; and (iii) present the MRS of the language
fragment. (The complete specification also gives semantics for pattern matching and ex-
ception handling constructions.)

3.1. Declarations

In SML, constant declarations are written aslet in end expressions, such as
let val x = 1 in x + 1 end

The informal meaning for this simple example is that the expressionx + 1 is
evaluated considering theenvironmentdetermined by thebinding from x to 1. Moreover,
if the identifiersx is also declared in an outermostlet, the innermost declaration prevail.
The environment wherex + 1 is evaluated into also has the declarations made “outside”
the let in end expression above, that arenotsubsumed byx .

Let us know turn to the MRS for constant declarations. First we apply therecord
inheritancetechnique. The declarations environment is represented by the sortEnv. In
order to place this component in the record, we use the indexenv , a constructor of sort
Index . We also add a membership axiom stating that an environment associated to the
indexenv (through the “: ” operator) is aField , that is, part of the record structure. These
two declarations are written in Maude as follows.



op env : -> Index [ctor] . mb env : E:Env : Field .

Next we apply theabstract interfacetechnique by declaring functions that deal
with bindings of a given environment. Two such functions arefind andoverride
declared with following signature in Maude:

op find : Env Ide -> [BVal] . op override : Env Ide BVal -> Env .

The functionfind is declared as apartial function since it may return values on
the kind [BVal] , that is, a certain identifier may not be present in a given environment.
The functionfind returns the value bound to the identifier in the environment otherwise.
Theoverride function also behaves as expected and returns a new environment where the
binding containing the identifier is overwritten. The environment is extended otherwise.

The following Maude rule specifies the semantics of alet expression with its dec-
larations part already evaluated.

crl { let b:Env in e:Exp end, { (env : rho:Env), pr:PreRecord} } =>
[ let b:Env in e’:Exp end, { (env : rho:Env), pr’:PreRecord } ]

if rho’:Env := override-env (rho:Env, b:Env) /\
{ e:Exp, { (env : rho’:Env), pr:PreRecord} } =>
[ e’:Exp, { (env : rho’:Env), pr’:PreRecord } ] .

This rule specifies that the expressione:Exp is to be evaluated considering bind-
ings in b:Env . The let expression may be nested deep inside into the program text, so
possibly there is already an outer binding environment, represented in the rule as the vari-
ablerho:Env . Notice that the rest of the record is captured by the variablepr:PreRecord .
This is an example of therecord inheritancetechnique for modular specification, that is,
when a new language fragment is added there will be no need for this rule to be changed
at all.

In order to evaluatee:Exp it is necessary tooverride the current environment
rho:Env with the new bindings defined byb:Env . The new environment is represented
by rho’:Env and is the result of the application of the functionoverride-env . This is an
abstract function, that is, at this point no assumptions are made about how the function
is implemented and thestructureof the environment. For example, in a further extension
one might want to create a new implementation of the environment that keeps track of
how many times a particular identifier was looked up. For that one would need to change
the concrete representation of bindings and add a counter to each binding, which would
not force any change to the rule above. This rule is written once and for all, and as
Mosses properly states, is definitive [21]. However it is not definitive only due to the
record inheritance butalsodue to the use of abstract interfaces [17].

The evaluation ofe:Exp with the new environmentrho’:Env rewrites toe’:Exp

and possible modifications to the rest of the record specified bypr’:PreRecord . However
the original environment is kept on the right hand side of the rule, specifying that the
environment does not allowside effects. This evaluation proceeds until the expression
turns into a computed value. At this point the wholelet expression is replaced by the
computed value.

3.2. Variable Assignment

Standard ML supports imperative constructions while maintaining the functional char-
acteristics of the bindings by associating values to identifiers through areference[25].



Referenced values are created with theref construction and can be bound to identifiers
(for exampleval x = ref 0 ). One can access the original value by dereferencing a vari-
able using the dereference operator! (for example!x ). The assignment of a new value to
a variable is done with the:= construction, which expects that the left hand side is bound
to a reference value. The result of an assignment is simply the empty tuple. An example
that explores these three constructions is

let val x = ref 0 in x := ! x + 1 end

In the MRS of CML references live in a new record component, the store. The
store associatesmemory locationswith values. As before, no assumption about the struc-
ture of memory locations and its associated storage is made. We then use both com-
ponents, the environment and store, by binding identifiers to memory locations in the
memory that in turn are associated with values in the store. In this way, although the
bindings from identifiers to memory locations can not change, the values referenced by
those memory locations can.

Similarly to the environment, we declare an index operator and a membership
equation, therefore applying the record inheritance technique. The sortSVal represents
the set of “storable” values. The indexst holds an element of sortStore and the specifi-
cation that a pairst : S:Store is of sortField , that is, part of the record structure, is
given by the membership equation below.

op st : -> Index [ctor] . mb st : S:Store : Field .

Abstract functions on the data typeStore are also defined such that no commit-
ments are made with respect to the internal structure of stores. The functionslookup and
update behave as expected. The former is a partial function that returns the value as-
signed to a given location in a given store, if the given location exists. The latter updates
the given store in the given location with a given value or extends the store otherwise.

op lookup : Store Loc -> [SVal] . op update : Store Loc SVal -> Store .

The evaluation of an assignment begins with the evaluation of the expression
E1:Exp := E2:Exp . (The rule is not shown here.) FirstE1:Exp is evaluated until it
becomes a memory location; thenE2:Exp is evaluated until it becomes a computed value.
The following Maude rule formalizes the assignment of a computed value to a memory
location.

crl { l:Loc := v:Value, {(st : sigma:Store), pr:PreRecord} } =>
[ tuple(), {(st : sigma’:Store), pr:PreRecord} ]

if sigma’:Store := update (sigma:Store, l:Loc, v:Value) .

The assignment of a value (v:Value ) to a memory location (l:Loc ) modifies the
store component from its original value (sigma:Store ) to its new value (sigma’:Store )
where the old value associated with the memory location is replaced with the new value.
The remaining of the record (pr:PreRecord ) is left unchanged. The entire assignment is
then rewritten to the empty tuple (tuple() ).

3.3. Concurrency Primitives

Reppy’s Concurrent ML [26] is an extension of SML with concurrency primitives. This
section shows the MRS specification for process creation and synchronization construc-
tions with a discussion regarding the latter.



New processes are created with thespawn construction. Sending and receiving
values is done using thesend andrecv constructions respectively. The communication
between processes is done through channels that are created with thechannel construc-
tion. In the example below two processes are created: one, bound to the identifierx , sends
a value through the channel bound to the identifierc and another, bound to the identifier
y , that expects to receive a value from the same channelc . The communication between
processes is synchronous, that is, both processesblockon send and receive.

let val c = channel () ;
x = (fn () => send c, 10) ; y = (fn () => recv c)

in spawn x ; spawn y
end

The MRS specification for concurrency primitives is based on a simplified version
of Reppy’s CML semantics. It introduces two new components into the record, of the
following sorts:Acts , with record indexac , that captures the signal of creation of a new
process, andPids , with record indexpids , that keeps the ids of the existing processes.
Each process is a sequence of expressions with an associatedprocess id. A new process
id is created using thenew-pid abstract function. The inclusion of a pid into the list
of current pids is done with theadd-pid abstract function. Thespawn construction is
defined by the following rule.

crl { spawn v:Value, {(pids : ps:Pids), (ac : a:Acts), pr:PreRecord} }
=> [ pi:Pid, {(pids : add-pid(ps:Pids, pi:Pid)),

(ac : concat(a:Acts, act(prc(pi:Pid, (v:Value tuple()))))),
pr:PreRecord} ] if pi:Pid := new-pid (ps:Pids) .

This rule specifies the spawning of ananonymousfunction. The variablev:Value

contains aclosure, a function abstraction structured as a pair, with the following compo-
nents: (i) another pair, composed by a function body and its formal parameters; and (ii)
the environment available to the function declaration. The closure value is appended to
the element of sortActs bound to theindexac . When a new process is inserted on theac

component, the rule below “detects” this and moves the process from theac component
to the pool of processes.

crl { prc(pi1:Pid, e1:Exp), {(ac : a:Acts), pr:PreRecord} } =>
[ (prc(pi1:Pid, e’1:Exp) || p:Procs), {(ac : a:Acts), pr’:PreRecord} ]
if { e1:Exp, {(ac : a:Acts), pr:PreRecord} } =>

[ e’1:Exp, {(ac : a’:Acts), pr’:PreRecord} ] /\
act(p:Procs) := last(a’:Acts) .

The semantics for process evaluation is implemented by means of nondetermin-
istic choice, thus specifying aninterleavingsemantics. Initially the entire program is
contained in a single process. As processes are created, they join a pool of processes
which has theassociative-commutativeoperator|| as constructor. As the computation
proceeds, each process is nondeterministically selected for evaluation from the processes
pids pool.

The following rule nondeterministically selects one process from the pool of pids
to execute. Note that only one rule is necessary because of theassociative-commutative
matching. (This simplification is not present in Mosses’ MSOS specification of CML,
which uses two rules for the nondeterministic choice.)



crl { p1:Proc || p2:Proc, r:Record } =>
[ p’1:Proc || p2:Proc, r’:Record ]

if { p1:Proc, r:Record } => [ p’1, r’:Record ] .

Synchronization is achieved with two new components, of the following sorts:
Chans , whose elements are in thechans index which keeps track of the created channels,
andOffers , whose elements are in theoffer index that holds the requests for synchro-
nization that a process emits. Thus when a process wishes to send or receive information
on a channel, it creates an offer and stores it in theoffer index. In order for two pro-
cesses to synchronize offers mustagree. The predicateagree below only returns true
when the offers are:snd(ch:Chan, v:Value) andrcv(ch:Chan) . The partial function
agree-value returnsv:Value when the offers agree. The following signature in Maude
declares theoffer index, theOffer constructorssnd andrcv , and theagree predicate.

op offer : -> Index . mb offer : o:Offers : Field .
op snd : Chan Value -> Offer . op rcv : Chan -> Offer .
op agree : Offer Offer -> Bool .
op agree-value : Offer Offer -> [Value] .

The following rule specifies the creation of new channels by adding them to the
ch component that holds elements of sortChan.

crl { channel tuple(), {(chans : c:Chans), pr:PreRecord} } =>
[ ch:Chan, {(chans : add-chn(c:Chans, ch:Chan)), pr:PreRecord} ]

if ch:Chan := new-chn (c:Chans) .

When a process wishes to send a valuev:Value to a channelch:Chan it signals a
send offerwhich is added to theoffer component.

rl { send tuple(ch:Chan,v:Value),{(offer : o:Offers),pr:PreRecord} } =>
[ tuple(), {(offer : set snd(ch:Chan, v:Value)), pr:PreRecord} ] .

The recv construction needed special treatment in the Maude implementation of
its MRS specification. Therefore let us first informally explain its MSOS semantics.
When a processp wishes to receive a value from a given channel, it places an offer of
the formrcv(ch:Chan,v:Value) in theoffer index. The variablev:Value is then sub-
stituted by a computed value whenp synchronizes with another process. The substitution
of v:Value is accomplished in MSOS through unification. However unification is not
available in Maude Alpha 83, the latest alpha release at this time.

The MRS rule forrecv specifies the following. The termrecv ch:Chan rewrites
to aplaceholderrecv-ph(ch:Chan) that will besubstitutedby the received value when
the process that has signaledrecv ch:Chan synchronizes with another process through
channelch:Chan .

rl { recv ch:Chan, {(offer : o:Offers), pr:PreRecord} } =>
[ recv-ph (ch:Chan), {(offer : set rcv(ch:Chan)), pr:PreRecord} ] .

When two processes signal offers thatagree, they can be evaluated at the same
time, as specified by the following Maude rule.

crl { p1:Procs || p2:Procs, {(offer : o:Offers), pr:PreRecord} } =>
[ p’1:Procs || subst-recv (p’2:Procs, v:Value),

{(offer : o:Offers), pr:PreRecord} ]



if { p1:Procs, {(offer : o:Offers),pr:PreRecord} } =>
[ p’1:Procs, {(offer : set o1:Offer), pr:PreRecord} ] /\
{ p2:Procs, {(offer : o:Offers),pr:PreRecord} } =>
[ p’2:Procs, {(offer : set o2:Offer), pr:PreRecord} ] /\
agree(o1:Offer, o2:Offer) /\
v:Value := agree-value (o1:Offer, o2:Offer) .

There are two important issues to be explained in the rule above: (i) the applica-
tion of functionsubst-recv that performs the above mentioned substitution, and (ii) the
predicateagree and the functionagree-value . We follow this order and begin with the
application of functionsubst-recv . During synchronization the substitution of the place-
holderrecv-ph ch by a value is done by the functionsubst-recv , which is actually a
meta-function. Before discussingsubst-recv , let us briefly comment on meta-functions
in rewriting logic and their implementation in Maude.

Rewriting logic is reflective [14], that is, a rewrite theoryR can be meta-repre-
sented as a termR, defined according to auniversalrewrite theory that can represent all
other theories including itself. This is the intuition behind the so-calledreflective tower
in rewriting logic which gives formal support for the definition of meta-applications in
Maude, such as execution environments for specification languages (e.g. [3]). Such ap-
plications are implemented in Maude as meta-functions (and meta-rules) that rely on
the so-called descent functions: primitive meta-functions in the Maude system. One
such descent function is theupTerm which receives a termt and returnst the meta-
representation oft. The downTerm function produces the object representationt of a
given meta-represented termt.

Let us return tosubst-recv . This function is defined in terms of the above men-
tionedupTerm anddownTerm descent functions. As a meta-function,subst-recv is de-
fined inductively on the structure of terms in the Maude language, and not inductively on
the CML syntax as would be the case ifsubst-recv was to be defined as a function at
the object level.

A definition of subst-recv at the object level would imply an axiomatization by
structural induction on the CML syntax. However, this approach isnot modular: any
extension to CML would require an extension to this function. Definingsubst-recv as
a meta-functionpreservesthe modularity of the specification, as opposed to an object-
level definition on the CML syntax, because, as we mentioned before, it is defined induc-
tively on the structure oftermsin the Maude language. Therefore, an extension to the
CML syntax doesnot imply an extension tosubst-recv . Due to space limitations we
refer to the complete specification athttp://www.ic.uff.br/˜cbraga/losd/specs/

cml.maude for the Maude definition ofsubst-recv .

We continue the explanation of the synchronization rule discussing the predicate
agree and the functionagree-value . By the definition ofagree , the synchronization
rule above is only applied whenp1:Proc is currently executing asend andp2:Proc is
currently executing arecv . At this pointp1:Proc will write an offer on itsoffer com-
ponent that will match the offer thatp2:Proc also writes on its ownoffer component.
After that, both processes evaluate one step of computation forward at the same time
(compare with the interleaving rule above) and update thep2:Proc process by substitut-
ing the placeholder value with a computed value.



With the rules so far, the means for a process to block until its offer does not
match with another offer from another process are not specified. This is accomplished by
the following rule.

crl { cml P:Procs, {(offer : offer-id), pr} } =>
[ cml P’:Procs, {(offer : offer-id), pr’} ]

if { P:Procs, {(offer : offer-id), pr} } =>
[ P’:Procs, {(offer : offer-id), pr’} ] .

This rule specifies that the multiset of processes may evolve when theoffer index
is empty (offer-id ). This captures both situations: when two processes synchronize, or
no process at all requires synchronization.

4. Executing and Verifying CML Programs with MRS

4.1. Executing the Factorial Function

We used two different implementations of the factorial function: the traditional recursive
(functional) and a iterative (imperative) version. The execution of the factorial of300
took 198.57 seconds with9, 512, 075 rewrites and7.5 seconds with351, 836 rewrites,
respectively.

All the rules in the MRS of CML described in Section 3 are written in the so-called
“small-step” form. Therefore, all the intermediate steps in a given computation are ob-
servable. This is not the case in the so-called “big-step” operational semantics [10], also
called “natural semantics.” In big-step specifications, intermediate steps are not observ-
able, which, of course, reduces the number of steps in computations. For this reason, we
have developed a big-step, equational version of the MRS of SML, which can be found
at http://www.ic.uff.br/˜cbraga/losd/specs/sml.maude . The equational version
of the MRS of SML was systematically produced from the MSOS of CML: inference rules
are represented by conditional equations, transitions in the premises of inference rules are
represented by the so-called “matching equations” [5], and, of course, the right hand side
of equations are always values. In the equational version of the MRS of SML, the exe-
cution of the factorial of300 took 0.45 seconds with23, 122 rewrites and0.52 seconds
with 33, 511 rewrites, for the recursive and iterative cases, respectively. It is interesting to
note that these execution times are comparable to the Moscow ML [27] implementation
of SML, using Joe Hurd’sbignum library1.

Table 1 summarizes these execution times. Column “eq” shows the execution
times and the number of rewrites of the equational, big-step specification of SML. Column
“rl” shows the execution times and the number of rewrites of the rule-based, small-step
specification of CML. Column “mosml” shows the execution times of the Moscow ML in-
terpreter. The recursive factorial function is represented by row “fat-rec” and the iterative
version by row “fat-nrec”. Times are in seconds.

4.2. Model Checking Dekker’s Algorithm for Mutual Exclusion

Maude comes with a built-in LTL model checker [6]. In what follows it is exemplified
the use of the MRS of CML together with the Maude model checker to verify Dekker’s

1http://www.cl.cam.ac.uk/˜jeh1004/software/bignum.htmlx



rl eq mosml
time rewrites time rewrites time

fat-rec 198.57 9512075 0.45 23122 3.30
fat-nrec 7.50 351836 0.52 33511 0.54

Table 1: Executing the factorial function in Maude and Moscow ML

algorithm [6], one of the earliest correct solutions to the mutual exclusion problem. The
algorithm assumes processes that execute concurrently on a shared memory machine and
communicate with each other through shared variables. There are two processes,p1 and
p2. Processp1 sets a Boolean variablec1 to 1 to indicate that it wishes to enter its
critical section. Processp2 does the same with variablec2 . If one process, after setting its
variable to 1 finds that the variable of its competitor is 0, then it enters its critical section
right away. In the case of a tie (both variables to 1) the tie is broken using a variable
turn that takes values in{1, 2}. Seehttp://www.ic.uff.br/˜cbraga/losd/
specs/cml.maude for Dekker’s algorithm in our CML syntax.

The program text consists of one single initial process that spawns two processes;
each process in turn loop entering and leaving the critical zone. While inside the crit-
ical zone each process assigns1 and0 to the variablescz1 andcz2 . Therefore, if the
implementation is correct, the store configuration with both variables set to1 will never
occur.

Let ϕmv be a linear temporal logic proposition that states that the mutual exclusion
property was violated, that is, both memory regions related tocz1 andcz2 have the value
1. Thus, it must be proved that2¬ϕmv is true. The following module specifiesϕmv as
the operatormutex-violation of sortProp and the proposition we are trying to prove is
represented by the formula[]˜mutex-violation .

mod CHECK is including CONCURRENCY-TEST .
including MODEL-CHECKER . subsort Conf < State .
op mutex-violation : -> Prop .
eq < P:Program,{(st : <[[loc(1),rat(1)]] [[loc(2),rat(1)]] C:CStore>),

PR:PreRecord } > |= mutex-violation = true .
endm

The result, shown below, means that the configuration represented by
mutex-violation will never occur, as expected. The computer used was an Pentium
IV 2.4 GHz with 512 MB RAM.

reduce modelCheck(dekker, []˜ mutex-violation) .
rewrites: 58380093 in 2315950ms cpu (2362140ms real)

(25207 rewrites/second)
result Bool: (true).Bool

Other checks are possible. For example: consider the propositioncompeting ,
meaning that both processes are competing for the critical zone. This is true when both
memory regions referenced by the variablesc1 (location 5) andc2 (location 6) are1, as
in:

op competing : -> Prop [ctor] .
eq < P:Program, {(st : <[[loc(5),rat(1)]] [[loc(6),rat(1)]] C:CStore>),

PR:PreRecord } > |= competing = true .



Consider also the propositionturn(i) which is true when the turn is with the
process identified byi . Recall thatturn selects which process is allowed to enter the
critical zone.

op turn : Int -> Prop [ctor] .
eq < P:Program, { (st : < [[loc(7),rat(i:Int)]] C:CStore >),

PR:PreRecord } > |= turn(i:Int) = true .

Finally, consider the following LTL formula:φ = 2(competing → (2turn(1))),
which can be understood as “it is always true that when both processes are competing,
the turn will always be with process 1”. When model checking this formula, Maude
produces a counter-example, after6.9 seconds and229, 112 rewrites, with33, 204 rewrites
per second. The counterexample shows all paths of computations in whichφ is not true.
For example, one such computation is

{< ...,{(env : < mt-env >),(st : < [[loc(1),rat(0)]] [[loc(2),rat(0)]]
[[loc(3),rat(0)]] [[loc(4),rat(0)]] [[loc(5),rat(1)]] [[loc(6),rat(1)]]
[[loc(7),rat(2)]] >),(val : < mt-val >),(pids : < pval[pid(1)] x
pval[pid(2)] x pval[pid(3)] >),(ac : < mt-ac >),tr : < mt-tr>} >,’step}

where one can see the memory location7 containing the value2, indicating that the turn
is now with process 2.

Even though the model checking ofφ took only a few seconds, the model checking
of ϕmv took almost forty minutes for a rather simple query and the reason for that is the
same as for the high execution times shown in Section 4.1: the large number of states
produced by a rule-based specification.

5. Final remarks

In this paper we have shown how CML programs can be executed and formally verified
within the Maude system using the MRS of CML, a modular specification in rewriting
logic for a significant subset of CML.

From this experiment it follows that the right balance between equational and rule-
based axiomatizations should be pursued, following the lines of [15], which are already
being followed in [18, 7]. Roughly speaking, the sequential fragment should be equa-
tionaly specified and the concurrent fragment should be rule-based. In this way the state
space is restricted to concurrency-related computations, interesting for reasoning with
model checking techniques.

Moreover, model checking of CML programs with conditional rewrites represent-
ing the transition rules’ premises proved somewhat problematic since rewrites in the con-
ditions are assumed “scratch pad rewrites” in RWL [14]. Thus, states that exist only in
the conditions can not be specified in the query (LTL formula) to the model checker. The
current MRS specification for CML only allows queries about the full program text, not
its parts. With this limitation queries to the model checker must be made by observing
changes to mutable components, such as the store, or by exploiting some property that
involves the entire program text, and not some part.

We are currently working on anewCML specification which should produce sev-
eral benefits when compared to the current, rule-based, one, by: (i) exploringtrue con-
currency, due to the congruence rule in RWL calculus, as opposed to the interleaving



model of the current, rule-based, specification; (ii) specifying the sequential fragment of
CML equationaly and the concurrent part with rules, following the taxonomy proposed
in [15]. This approach should lead to a transition system with fewer states, due to the
use of equations to specify the sequential part, therefore making model checking faster.
It is also believed that this technique should shorten execution time; (iii) move towards
a reduction semantics[9] together with a continuation-passing style [7] in order to avoid
conditional rewrites representing transition rules’ premises.

6. Acknowledgements

The authors would like to thank the anonymous referees for their comments and sugges-
tions, to CNPq under process 300294/2003-4, PROPP/UFF, and to EPGE-FGV.

References

[1] P. Bertelsen, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen, N. Rothwell, P. Ses-
toft, M. Tofte, and D. N. Turner. ML Kit.http://www.itu.dk/research/
mlkit/ .

[2] P. Borovansḱy, C. Kirchner, H. Kirchner, and P.-E. Moreau. Elan from a rewriting logic
point of view. Theoretical Computer Science, 285:155–185, 2002.

[3] C. Braga.Rewriting Logic as a Semantic Framework for Modular Structural Operational
Semantics. PhD thesis, Pontifı́cia Universidade Católica do Rio de Janeiro, Septem-
ber 2001.http://www.ic.uff.br/˜cbraga .

[4] C. Braga and J. Meseguer. Modular rewriting semantics in practice. In N. Martı́-Oliet,
editor,Proceedings of 5th International Workshop on Rewriting Logic and its Appli-
cations, WRLA 2004, Electronic Notes in Theoretical Computer Science. Elsevier,
2004. To appear.

[5] M. Clavel, F. Duŕan, S. Eker, N. Martı́-Oliet, P. Lincoln, J. Meseguer, and C. Talcott.
Maude 2. SRI International and University of Illinois at Urbana-Champaign,http:
//maude.cs.uiuc.edu , 2003.

[6] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In
F. Gadducci and U. Montanari, editors,Fourth Workshop on Rewriting Logic and its
Applications, WRLA ’02, volume 71 ofElectronic Notes in Theoretical Computer
Science. Elsevier, 2002.

[7] A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal analysis of Java programs in
JavaFAN. InCAV’04, Proc. 16th Intl. Conf. on Computer Aided Verification, Boston,
USA, Lecture Notes in Computer Science. Springer, 2004. To appear.

[8] K. Futatsugi and R. Diaconescu. Cafeobj report.World Scientific, AMAST Series, 1998.

[9] J. A. Goguen and G. Malcolm.Algebraic Semantics of Imperative Programs. MIT Press,
Cambridge, MA, USA, 1996.

[10] G. Kahn. Natural semantics. Report 601, Inria, Institut national de Recherche en Infor-
matique et en Automatique, Domaine de Voluceau, Rocquencourt B.P.105 78153 Le
Chesnay Cedex Fance, February 1987.



[11] B. Laboratories, P. University, Y. University, and A. Research. Standard ML of New
Jersey.http://www.smlnj.org/ .

[12] N. Mart́ı-Oliet and J. Meseguer.Handbook of Philosophical Logic, volume 61, chapter
Rewriting Logic as a Logical and Semantic Framework. Kluwer Academic Publish-
ers, second edition, 2001.http://maude.cs.uiuc.edu/papers .

[13] D. Matthews. Poly/ML.http://www.polyml.org/ .

[14] J. Meseguer. Conditional rewriting as a unified model of concurrency.Theoretical Com-
puter Science, 96(1):73–155, April 1992.

[15] J. Meseguer. Software specification and verification in rewriting logic.http://
maude.cs.uiuc.edu/papers , 2003.

[16] J. Meseguer and C. Braga. Modular rewriting semantics of programming languages.
http://maude.cs.uiuc.edu/papers .

[17] J. Meseguer and C. Braga. Modular rewriting semantics of programming languages. In
AMAST’04, Proc. 10th Intl. Conf. on Algebraic Methodology and Software Technol-
ogy, Sterling, UK, Lecture Notes in Computer Science. Springer, 2004. To appear.

[18] J. Meseguer, M. Palomino, and N. Martı́-Oliet. Equational abstractions. In F. Baader, edi-
tor, Automated Deduction - CADE-19. 19th International Conference on Automated
Deduction, Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings, volume
2741 ofLecture Notes in Computer Science. Springer-Verlag, 2003. Submitted for
publication, January 2003.

[19] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The definition of Standard ML (Re-
vised). MIT Press, 1997.

[20] P. D. Mosses. Fundamental concepts and formal semantics of programming languages –
an introductory course. Technical report, University of Aarthus, Denmark, 2002.

[21] P. D. Mosses. Definitive semantics. Technical report, Warsaw University, 2003.http:
//www.mimuw.edu.pl/˜mosses/DS-03 .

[22] P. D. Mosses. Modular structural operational semantics.Journal of Logic and Algebraic
Programming, 2003. To appear.

[23] U. of Cambridge Computer Laboratory. HOL, automated proof system for higher order
logic. http://hol.sourceforge.net/ .

[24] L. Paulson and T. Nipkow. Isabelle, a generic theorem proving environment.http:
//www.cl.cam.ac.uk/Research/HVG/Isabelle/ .

[25] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN - 19, Computer Science Department, Aarhus University, 1981.

[26] J. Reppy.Higher-Order Concurrency. PhD thesis, Cornell University, June 1992. Tech-
nical Report TR 92-1285.

[27] P. Sestoft. Moscow ML.http://www.itu.dk/research/mlkit/ .

[28] J. A. Verdejo. Maude como um marco semântico ejecutable. PhD thesis, Universidad
Complutense Madrid, 2003.

All URLs in this paper are valid as of April 16th, 2004.


