
Partial Categorical Multi-Combinators
and Church-Rosser Theorems

Rafael Dueire Lins

1Universidade Federal de Pernambuco
DES - CTG, Recife, PE, Brazil

rdl@ee.ufpe.br

Abstract. Categorical Multi-Combinators form a rewriting system developed
with the aim of providing efficient implementations of lazy functional languages.
This system allows the equivalent of severalβ-reductions to be performed at
once, as functions form frames with all their arguments. Although this feature is
convenient for most cases of function application it does not allow partially pa-
rameterised functions to fetch arguments. This paper presents Partial Categori-
cal Multi-Combinators, a new rewriting system, which removes this drawback.

Resumo.Este artigo descreve o sistema de reescrita dos Multi-Combinadores
Cateǵoricos Parciais, que possui a propriedade de efetuar o equivalente a uma
série deβ reduç̃oes doλ-cálculo em umúnico passo de reescrita e possibilita
aplicaç̃oes parciais.

Introduction

The method of compilation of functional languages into combinators, first explored by
Turner in[20], provides a way of removing the variables from a program, transforming
it into an applicative combination of constant functions orcombinators. Turner used
a set of combinators based on Curry’s Combinatory Logic. To each combinator there
is associated a rewriting law. In rewriting a combinator expression, Turner rewrites the
leftmost-outermost reducible subexpression (orredex) at each stage. When no further
rewriting can take place the expression is said to be innormal form .

Another theory of functions is provided by Category Theory[6], and we can see the
notation used herein as providing an alternative set of combinators. The original system
of Categorical Combinators was developed by Curien[2]. This work was inspired by the
equivalence of the theories of typedλ-calculus and Cartesian Closed Categories as shown
by Lambek[6] and Scott[19].

Aiming to implement lazy functional languages in an efficient way using rewriting
of Categorical Combinators we developed a number of optimisations[7, 8] of the naı̈ve
system, the most refined of which was the system of Linear Categorical Combinators[8].
The modifications introduced reduce the number of rewriting laws and increase the ef-
ficiency of the system by reducing the number of rewriting steps involved in taking an
expression to normal form, whilst leaving the complexity of the pattern matching algo-
rithm unchanged.

Categorical Multi-Combinators are a generalisation of Linear Categorical Combi-
nators. Each rewriting step of the Multi-Combinator code is equivalent to several rewrit-
ings of Linear Categorical Combinators, since an application of a function to several
arguments can be reduced in a single step. The core of the system of Categorical Multi-
Combinators consists only of four rewriting laws with a very low pattern-matching com-
plexity and avoids the generation of trivially reducible sub-expressions. In [12] we have
shown the equivalence between the operational semantics of the TIM [3] machine and
rewriting of Categorical Multi-Combinator expressions: every TIM state is equivalent to
a Categorical Multi-Combinator expression andvice versa; equivalent expressions are
transformed into equivalent expressions by rewriting.

Independently, there has been much interest in compiled versions of functional
languages which run much more quickly on von Neumann machines than do interpreters.
Johnsson, with his implementation of Lazy ML[5], showed that it is possible to get fast
implementations of lazy functional languages. The basic principle of the G-Machine is to
avoid generating graphs. An analysis of the G-Machine and its optimisations can be found
in [13]. Categorical Multi-Combinators served as a basis for several compiled machines
[10, 11, 16, 17]. The latest one,ΓCMC [10], has already shown very good performance
figures [18].

The system of Categorical Multi-Combinators allows the equivalent of severalβ-
reductions to be performed at once, as functions form frames with all their arguments.
This feature is convenient for most cases of function application because a coarser gran-
ularity of computation allows better compiled code. On the other hand, full lazyness
is lost because partially parameterised functions are not reducible as such. Partial ap-
plications need to wait until the evaluation reaches a point in which all arguments are
present, becoming a total application. If a partial application becomes shared in Categori-
cal Multi-Combinators a copy of it is made for each instance of the variable to be replaced,
losing the sharing of computations. Pseudoknot [18] is an example of a benchmark in
which there is a large number of shared partial applications. In this paper we present a
new set of Categorical Multi-Combinators, called Partial Categorical Multi-Combinators,
which allows partial applications to be evaluated. We prove that Partial Categorical Multi-
Combinators have the Church-Rosser properties of uniqueness of normal forms and that
they are normalising, i.e. rewriting the leftmost-outermost pattern at each point of the
reduction sequence leads to normal form, if it exists.

Categorical Multi-Combinators

In this section we present the compilation algorithm and rewriting laws for Categorical
Multi-Combinators.

Compilation Algorithm

In Categorical Multi-Combinators, function application is denoted by juxtaposition, taken
to be left-associative. The compilation algorithm for translatingλ-expressions into Cate-
gorical Multi-Combinators is:

(T.1) [λxi . . . λxj︸ ︷︷ ︸
n

.a] = 〈Ln−1(Rxi...xja), ()〉

(T.2) [a . . . b] = [a] . . . [b]
(T.3) [c] = c, wherec is a constant.
(T.4) Rxi...xj λxk . . . λxl︸ ︷︷ ︸

m

.a = Lm−1(Rxi...xjxk...xla)

(T.5) Rxi...xj(a . . . b) = (Rxi...xja . . . Rxi...xjb)

(T.6) Rxi...xjb =

{
b, if b is a constant
nk, if b = xk

In the case of rules T.1 and T.4 above,n andm stand for the largest possible sequence
of binders, i.e.a may not be an abstraction.Rxi...xj is an auxiliary function which at T.6
replaces variables by its deBruijn number, the depth in the list of bound variables gener-
ated by T.1 and expanded by T.4. Rule T.5 above, simply distributes the environment (list
of bound variables) through applications. Whenever applying rule T.6 above a variableb
can be associated with more than onexk one must choose the minimum corresponding
nk, keeping locality of binding.

Categorical Multi-Combinator Rewriting Laws

The core of the Categorical Multi-Combinator machine is presented on page 71 of [9].
For a matter of convenience the multi-pair combinator, which forms evaluation environ-
ments, is written as(x0, . . . , xn). Compositions, which represent closures, are denoted as
〈a, b〉. Using this notation the kernel of the Categorical Multi-Combinator rewriting laws
is expressed as:

(M*.1) 〈n, (xm, . . . , x1, x0)〉 ⇒ xn

(M*.2) 〈x0x1x2 . . . xn, y〉 ⇒ 〈x0, y〉 . . . 〈xn, y〉
(M*.3) 〈Ln(y), (w0, . . .)〉x0x1 . . . xnxn+1 . . . xz ⇒ 〈y, (x0, . . . , xn)〉xn+1 . . . xz

(M*.4) 〈k, (xm, . . . , x1, x0)〉 ⇒ k, wherek is a constant

The state of computation of a Categorical Multi-Combinator expression is represented by
the expression itself. Rule (M*.1) performs environment look-up, this is the mechanism
by which a variable fetches its value in the corresponding environment. (M*.2) is respon-
sible for environment distribution. Rule (M*.3) performs environment formation. It is
called multi-β reduction, because it is equivalent to performing severalβ-reductions in
theλ-calculus. Rule (M*.4) discards the environment associated with a constant.

(λa.a a)((λcλd.d)B)C is translated into Categorical Multi-Combinators and
rewritten as (we assume that[B] = B′ and[C] = C ′),

〈L0(0 0), ()〉(〈L1(0), ()〉 B′)C ′ M∗.3⇒ 〈(0 0), (〈L1(0), ()〉 B′)〉 C ′

M∗.2⇒ (〈0, (〈L1(0), ()〉 B′)〉〈0, (〈L1(0), ()〉 B′)〉) C ′

M∗.1⇒ 〈L1(0), ()〉 B′ 〈0, (〈L1(0), ()〉 B′)〉) C ′

M∗.3⇒ 〈0, (B′, 〈0, (〈L1(0), ()〉 B′)〉)〉C ′

M∗.1⇒ 〈0, (〈L1(0), ()〉 B′)〉 C ′

M∗.1⇒ 〈L1(0), ()〉 B′ C ′

M∗.3⇒ 〈0, (B′, C ′)〉 M∗.1⇒ C ′

Reduction Order

It is a well known fact that leftmost-outermost reduction ofλ-expressions is a safe but
non-optimal reduction strategy. In theλ-expression

(λa.a a)((λcλd.d)B) C

the reduction of the rightmost redex yields

β⇒ (λa.a a)(λd.d) C
β⇒ (λd.d)(λd.d) C
β⇒ (λd.d) C
β⇒ C

The sequence of reductions above is shorter than the leftmost-outermost one, because the
partial application, which forms the rightmost redex in the expression above, was reduced
before being copied. Functional programs often make use of partially applied functions
[18]. A program that makes intensive use of partial applications which become shared
during execution calls for an efficient mechanism allowing the sharing of computation to
be kept.

If we analyse the sequence of reductions for Categorical Multi-Combinators we
can see that the Categorical Multi-Combinator sub-expression equivalent to the rightmost
redex in theλ-expression is not reducible by applying any of the rewriting laws above.
Categorical Multi-Combinators will make copies of the partial application and “wait”
until all arguments are present to perform multi-β reduction. As functional languages
only print expressions of ground type, we know that the extra arguments needed will be in
place whenever the partial application becomes the leftmost-outermost redex, thus making
multi-β reduction possible. However, not being able to share the result of evaluation of
partial applications has performance implications.

Partial Categorical Multi-Combinators

In this section we introduce Partial Categorical Multi-Combinators, a rewriting system
which allows to reduce partially applied functions.

Compilation Algorithm

The compilation algorithm for translatingλ-expressions into Partial Categorical Multi-
Combinators is different from that presented above for Categorical Multi-Combinators.
Now, instead of working with the deBruijn representation for variables we work with
the co-deBruijn number, as we want variables to which arguments are passed first to be
represented by smaller numbers than the ones which correspond to arguments passed later
on. Parenthesisation of expressions is also made explicit. Thus the compilation algorithm
for Partial Categorical Multi-Combinators from fully parenthesisedλ-lifted expressions
in theλ-Calculus is:

(T’.1) [λxi . . . λxj︸ ︷︷ ︸
n

.a] = 〈Ln−1(Rxj ...xia), ()〉

(T’.2) [(. . . (a b) . . . c)] = (. . . ([a][b]) . . . [c])
(T’.3) [c] = c, wherec is a constant.
(T’.4) Rxj ...xi λxk . . . λxl︸ ︷︷ ︸

m

.a = Lm−1(Rxl...xkxj ...xia)

(T’.5) Rxj ...xi(. . . (a b) . . . c) = (Rxj ...xia . . . Rxj ...xib) . . . Rxj ...xic

(T’.6) Rxj ...xib =

{
b, if b is a constant
nk, if b = xk

The remarks made on the compilation algorithm for Categorical Multi-Combinators still
hold. Again, if whenever applying rule T’.6 above a variableb can be associated with
more than onexk, then one must choose the maximum correspondingnk. This enforces
the locality of binding of variables. Observing the compilation algorithm above one can
see that the only difference to the Categorical Multi-Combinators (rules T.1 to T.6) is the
representation of variables by the co-deBruijn number.

Example of Compilation

Here follows an example of the compilation of aλ-expression into Partial Categorical
Multi-Combinators, using the algorithm above:

[(((λa.a a)((λcλd.d)B)) C)]
T ′.2
= (([(λa.a a)] [((λcλd.d)B)]) [C])

T ′.1
= ((〈L0(Ra(a a)), ()〉 [((λcλd.d)B)]) [C])

T ′.5
= ((〈L0(Raa Raa), ()〉 [((λcλd.d)B)]) [C])

T ′.6
= ((〈L0(0 Raa), ()〉 [((λcλd.d)B)]) [C])

T ′.6
= ((〈L0(0 0), ()〉 [((λcλd.d)B)]) [C])

T ′.2
= ((〈L0(0 0), ()〉 ([λcλd.d] [B])) [C])

T ′.1
= ((〈L0(0 0), ()〉 (〈L1(Rd,cd), ()〉 [B])) [C])

T ′.6
= ((〈L0(0 0), ()〉 (〈L1(1), ()〉 [B])) [C])

The size of compiled expressions in Partial and Categorical Multi-Combinators is exactly
the same and is linear with theirλ-calculus equivalent.

Partial Categorical Multi-Combinators Rewriting Laws

In this section we generalise multi-β reduction to allow a function to fetch fewer argu-
ments than its arity passed to it. Thus one has,

(. . . (〈Ln(y), (w1, . . .)〉)x0)x1) . . .)xm) ⇒ 〈Ln−m−1(〈y, (x0, . . . , xm)〉), ()〉 if m < n

Now, one needs to adjust the argument fetching mechanism in such a way to allow vari-
ables to work with partial multi-β reduction.

〈n, (xm, . . . , x1, x0)〉 ⇒
{

xn, if n ≤ m
n−m− 1, otherwise

The complete set of rewriting laws for Partial Categorial Multi-Combinators is:

(P.1) 〈n, (xm, . . . , x1, x0)〉 ⇒
{

xn, if n ≤ m
n−m− 1, otherwise

(P.2) 〈x0x1x2 . . . xn, y〉 ⇒ 〈x0, y〉 . . . 〈xn, y〉
(P.3) (. . . (〈Ln(y), (w1, . . .)〉)x0) . . .)xn)xn+1) . . .)xz) ⇒

(. . . 〈y, (x0, . . . , xn)〉), xn+1) . . .)xz)
(P.4) (. . . (〈Ln(y), (w1, . . .)〉x0) . . .)xm) ⇒ 〈Ln−m−1(〈y, (x0, . . . , xm)〉), ()〉 if m < n
(P.5) 〈k, (xm, . . . , x1, x0)〉 ⇒ k, wherek is a constant

The fundamental difference between Partial and Categorical Multi-Combinators above is
rewriting law P.4 above. It allows a function with less arguments than its arity to process
the existing arguments yielding another function on the remaining arguments. Law P.4
restores an adequate degree of currying to the system of Categorical Multi-Combinators
lost byλ-lifting, without incurring the penalty of having redundant laziness.

Example of Evaluation

Let us analyse the Partial Categorical Multi-Combinator expression presented in the ex-
ample above under a reduction strategy similar to the one adopted for the reduction of the
λ-expression in the last section, i.e. reducing the rightmost redex first.

((〈L0(0 0), ()〉 (〈L1(1), ()〉 B′)) C ′)
P.4⇒ ((〈L0(0 0), ()〉 (〈L0(〈1, B′〉), ()〉) C ′)
P.1⇒ ((〈L0(0 0), ()〉 〈L0(0), ()〉) C ′)

at this point the partial parameterisation of the function on the right hand side of the
expression above was fully reduced, giving rise to a new function. Evaluation proceeds
as follows:

P.3⇒ (〈(0 0), (〈L0(0), ()〉)〉 C ′)
P.2⇒ ((〈0, (〈L0(0), ()〉)〉) 〈0, (〈L0(0), ()〉)〉 C ′)
P.1⇒ (〈L0(0), ()〉 〈0, (〈L0(0), ()〉)〉 C ′)
P.3⇒ (〈0, (〈 0, (〈L0(0), ()〉)〉)〉 C ′)
P.1⇒ (〈0, (〈L0(0), ()〉))〉 C ′)
P.1⇒ (〈L0(0), ()〉))〉 C ′)
P.3⇒ 〈0, (C ′)〉
P.1⇒ C ′

Below, we prove that Partial Categorical Multi-Combinators have the Church-Rosser
property allowing rewritings to take place in any order to reach normal form, if it ex-
ists. Notice that applicative order in Categorical Multi-Combinators yields expressions
equivalent toλ-expressions inhead-normal forms. Applicative order reduction of Par-
tial Multi-Combinator expressions yields expressions equivalent to expressions innormal
form in theλ-Calculus.

Church-Rosser Theorems

The first Church-Rosser theorem for theλ-Calculus proves the uniqueness of normal
forms of λ-expressions, if they exist. This means that all terminating sequences of re-
ductions of aλ-expression will lead to the same result. A rewriting system to which
the Church-Rosser property is valid is calledconfluentor Church-Rosser. The second
Church-Rosser theorem for theλ-Calculus shows that the reduction of the leftmost-
outermost redex at each point of the reduction sequence leads to normal form, if it exists.

In this section, we show that Partial Categorical Multi-Combinators have the prop-
erties stated by the two Church-Rosser theorems.

Normal Forms

Here we prove that Partial Categorical Multi-Combinators have the property that if one
starts from a Partial Categorical Multi-Combinators expression any terminating sequence
of reductions leads to the same expression.

Our strategy for proving this property is based on Huet’s version of the Knuth-
Bendix algorithm [4]. Huet proves that if a rewriting system ifleft-linear and has no
critical pairs it is confluent. A rewriting system is said to be left-linear if no variable ap-
pears more than once on the left-hand side of any of its rewriting rules. Critical pairs are
computed by a superposition algorithm, where one attempts to match in a most general
way the left-hand side of some rewriting rule with a nonvariable subterm of all rewrit-
ing rules in the system, including itself. Critical pairs show the possibility of reduction
sequences diverging. Huet’s result is easily extensible to a conditional rewriting system
where mutually exclusive clauses do not give rise to critical pairs.

The analysis of the set of rewriting laws for Partial Categorical Multi-Combinators
shows that there is no repeated variable on the left-hand side of any of the rewriting rules.
Considering that rules P.3 and P.4 are mutually exclusive, there is no possible overlapping
of patterns on the left hand side of any of the rewriting laws. Any rewritable pattern
matches trivially with a variable of any of the rewriting laws in the system, therefore there
are no critical pairs. We have proved that Partial Categorical Multi-Combinators form
a confluent rewriting system, thus the Church-Rosser property of uniqueness of normal
forms holds.

Normalisation Property

This section presents the proof that the reduction of the leftmost-outermost redex at each
point of the reduction sequence leads to normal form, if it exists. A direct proof of this the-
orem is not simple. Our strategy is to produce a proof in three steps. First, we present the
λ-Calculus with lazy substitutions [7], a rewriting system which performsβ-reductions
with explicit, on demand, variable substitution. The second step is to introduce theλ-
Calculus with Multiple Substitutions, a rewriting system in which each rewriting step
is equivalent to severalβ-reductions. Variable substitution is also performed explicitly
and on demand. Then, we show that leftmost-outermost rewritings of Partial Categori-
cal Multi-Combinators are equivalent to leftmost-outermost rewritings on theλ-Calculus
with Multiple Substitutions, therefore equivalent in each step to a sequence of leftmost-
outermostβ-reductions on theλ-Calculus.

The λ-Calculus with Lazy Substitutions

The rewriting system called theλ-Calculus with lazy substitutions was introduced in [7] as
a way to prove that the leftmost-outermost rewriting of Simplified Categorical Combina-
tors [8] was equivalent to performing leftmost-outermostβ-reductions in theλ-Calculus.

The rewriting laws in theλ-Calculus with lazy substitutions are:

l.1 (λx.a)A ⇒ [A/x]a

l.2 [A/x]λz.a ⇒

λz.a, if x 6= z
λz.[A/x]a, if x 6= z, and z not free in A
λz.[A/x][w/z]a, where w is a new variable

l.3 [A/x] (a b) ⇒ ([A/x]a) ([A/x]b)
l.4 [A/x] x ⇒ A
l.5 [A/x] z ⇒ z

Rule 1.1 above isβ-reduction with an explicit variable substitution operator[A/x]. Rules
l.2 and l.3 shifts the substitution operator into the body of an abstraction and distributes
it through an application, respectively. Rules l.4 and l.5 perform actual substitution of
formal parameters for real parameters. It is obvious that the leftmost-outermost reduction
in theλ-Calculus with lazy substitutions is equivalent to leftmost-outermostβ-reduction
in theλ-Calculus.

The λ-Calculus with Multiple Substitutions

Assuming we have the followingλ-expression,

(λx.λy.λz.a) T U V . . .

applying the rules of theλ-Calculus with lazy substitutions it leftmost-outermost reduces
to:

⇒
l.1 ([T/x]λy.λz.a) U V . . .
⇒
l.2 (λy.[T/x]λz.a) U V . . .
⇒
l.1 ([U/y][T/x]λz.a) V . . .
⇒
l.2 ([U/y]λz.[T/x]a) V . . .
⇒
l.2 (λz.[U/y][T/x]a) V . . .
⇒
l.1 ([V/z][U/y][T/x]a) . . .

One can observe in the sequence of reductions above that no other rewriting takes place
until all the substitution operators appear. There is no reason for not rewriting the top
expression directly into the bottom one, as this is always the leftmost-outermost rewriting
path, yielding:

(λx.λy.λz.a) T U V . . . ⇒ ([V/z][U/y][T/x]a) . . .

Making this a new rewriting law and adopting a more convenient notation for the sub-
stitution operator we present a new rewriting system called theλ-Calculus with Multiple
Substitutions:

m.1 (λx1.λx2. . . . λxn.a)A1 . . . Am ⇒ λxm+1 . . . λxn.[A1/x1, . . . , Am/xm]a, if m < n.
m.2 (λx1.λx2. . . . λxn.a)A1 . . . AnAn+1 . . . ⇒ [A1/x1, . . . , An/xn]aAn+1 . . ., otherwise.
m.3 [A1/x1, . . . , An/xn]λz.a ⇒ λz.[A1/x1, . . . , An/xn]a
m.4 [A1/x1, . . . , An/xn](a . . . b) ⇒ ([A1/x1, . . . , An/xn]a . . . [A1/x1, . . . , An/xn]b)
m.5 [A1/x1, . . . , An/xn]xi ⇒ Ai

m.6 [A1/x1, . . . , An/xn]z ⇒ z

In rule m.3 we assume that for alli we havexi 6= z and thatz does not appear free in any
expressionAi, α-conversion may be needed to guarantee this condition.

One can see by construction that the leftmost-outermost reduction in theλ-
Calculus with Multiple Substitutions is equivalent to a sequence of leftmost-outermost
reductions in theλ-Calculus with Lazy Substitutions, therefore any terminating sequence
in the former gives rise to one in the latter; thus this reduction strategy is normalising.

Final Step

Now we prove that the rewriting of the leftmost-outermost pattern of Partial Categori-
cal Multi-Combinators corresponds to rewriting the leftmost-outermost redex in theλ-
Calculus with Multiple Substitutions. We first introduce a translation functionT , which
translates Partial Categorical Multi-Combinator expressions into expressions of theλ-
Calculus with Multiple Substitutions. The translation functionT is defined as:
(t.1) T wm...w1(. . . (a b) . . .)l) = T wm...w1aT wm...w1b . . . T wm...w1l
(t.2) T wm...w1Ln(〈y, (x1, . . . , xm)〉) = (λwm+1 . . . λwn−m+1.T wm+n+1...w1〈y, (x0, . . . , xm)〉)
(t.3) T wm...w1〈Ln(y), (xm, . . . , x1)〉) = (λw1 . . . λwm+1.T wm+n...w1y)
(t.4) T wm...w1〈y, (xn, . . . , x1)〉 = [T []x1/w1, . . . , T []xn/wn]T wm+n...w1y
(t.5) T wm...w1n = wn+1, if n is a variable.
(t.6) T wm...w1k = k, if k is a constant.

One can observe that the translation functionT is a correct mapping between the two
rewriting systems by analysing the behaviour of original and translated expressions. One
can see thatT andR behave almost as inverses of each other. We show that if a Partial
Categorical Multi-Combinator expressionA leftmost-outermost rewrites in one step to
an expressionA′, then the translation ofA into theλ-Calculus with Multiple Substitu-
tions,T A, leftmost-outermost rewrites toT A′, in one step. So, the following diagram
commutes:

A
T→ T A

⇓ ⇓
A′ T→ T A′

We will analyse each of the rewritable patterns for Partial Categorical Multi-Combinators.

P.1

T []〈n, (x0, . . . , xm)〉 t.4
= [T []x0/w1, . . . , T []xm/wm+1]T wm+1...w1n

⇓ P.1 ⇓ t.5

T []xn [T []x0/w1, . . . , T []xm/wm+1]wn+1

⇓ m.5

T []xn

The second clause in rule P.1 is never the leftmost-outermost redex in a Partial Multi-
Combinator expression. If it were, there would be a situation equivalent to existing a free
variable in the code.

P.2

T [](〈(x0, . . . , xn), (v1, . . . , vm)〉) t.4
=

⇓ P.2

T [](〈x0, (v1, . . . , vm)〉) . . . (〈xn, (v1, . . . , vm)〉)
⇓ t.1

T [](〈x0, (v1, . . . , vm)〉) . . . T [](〈xn, (v1, . . . , vm)〉)
⇓ t.4

[T []v1/w1, . . .]T wm...x0 . . . [T []v1/w1, . . .]T wm...xn

t.4
= [T []v1/w1, . . . , T []vm/wm]T wm...(x0, . . . , xn)

⇓ t.1

[T []v1/w1, . . .]T wm...x0 . . . T wm...xn

⇓ m.4

[T []v1/w1, . . .]T wm...x0 . . . [T []v1/w1, . . .]T wm...xn

P.3

T [](. . . (〈Ln(y), (vl, . . . , v1)〉x0) . . .)xn) . . .)xz)
=
t.1

⇓ P.3

T [](. . . (〈y, (x0, . . . , xn)〉xn+1) . . .)xz)

⇓ t.1

T [](. . . (〈y, (x0, . . . , xn)〉 T []xn+1 . . . T []xz

⇓ t.4

[T [](x0/w1, . . . , T []xn/wn+1)] T wn+1...w1yT []xn+1 . . . T []xz

=
t.1 T [](. . . (〈Ln(y), (vl, . . . , v1)〉T []x0 . . . T []xn . . . T []xz

⇓ t.3

(λw1 . . . λwn+1.T
wn+1...w1y)T []x0 . . . T []xn . . . T []xz

⇓ m.2

[T [](x0/w1, . . . , T []xn/wn+1)] T wn+1...w1yT []xn+1 . . . T []xz

P.4

T [](. . . (〈Ln(y), (vl, . . . , v1)〉x0) . . .)xm)
=
t.1

⇓ P.4

T [](. . . (Ln−m−1(〈y, (x0, . . . , xm)〉)
||t.2

(λwm+1 . . . λwn−m−1.T wn−m...w1〈y, (x0, . . . , xm)〉)
||t.4

(λw1 . . . λwn−m.[T []x0/w1, . . . , T []xm/wm+1] T wn+1...w1y)

=
t.1 T [](. . . (〈Ln(y), (vl, . . . , v1)〉T []x0 . . . T []xm

⇓ t.3

(λw1 . . . λwn+1.T
wn+1...w1y)T []x0 . . . T []xm

⇓ m.1

(λw1 . . . λwn−m.[T []x0/w1, . . . , T []xm/wm+1] T wn+1...w1y)

P.5

T []〈k, (x1, . . . , xm)〉
=
t.4 [T []x1/w1, . . . , T []xm/wm] T wm...w1k

⇓ P.5 ||t.6

T []k
=
t.4 [T []x1/w1, . . . , T []xm/wm] k

||t.6 ⇓ m.6

k k

BecauseT makes no redex transposition during translation, the leftmost-outermost Partial
Categorical Multi-Combinator redex corresponds to the leftmost-outermost redex in the
λ-Calculus with Multiple Substitutions, in the sense that the rewriting of the leftmost-
outermost redexes in both systems are equal modulo translation. We can conclude that
leftmost-outermost rewritings of Partial Categorical Multi-Combinators is a normalising
strategy.

Conclusions

Partial Categorical Multi-Combinators form a rewriting system, which performs the
equivalent to a sequence ofβ-reductions in one rewriting step, but also allow for the
reduction of partially parameterised functions. This paper shows that Partial Categori-
cal Multi-Combinators have the Church-Rosser properties of uniqueness of normal forms
and that the rewriting of the leftmost-outermost pattern leads to normal form, if it exists.
The introduction of Partial Categorical Multi-Combinator toΓCMC brought full lazyness
to the machine, allowing for partial applications to be shared. This strategy has proved
efficient in our implementation of Haskell [1, 15], yielding a performance improvement
of about 20% for the Pseudoknot benchmark [18].

Acknowledgements

The author is grateful to Simon Thompson (The University of Kent at Canterbury, U.K.)
for his comments on an early version of this paper and to three anonymous referees for
their comments.

References

[1] F.H.Carvalho Jr., R.M.F.Lima and R.D.Lins. Coordinating Functional Processes with
Haskell#. Proceedings of 2002 ACM Symposium on Applied Computation, Madrid,
Spain, March 2002.

[2] P-L.Curien. Categorical Combinators, Sequential Algorithms and Functional Program-
ming. Research Notes in Theoretical Computer Science. Pitman Publishing Ltd.,
1986.

[3] J.Fairbairn and S.Wray. TIM: A simple, lazy abstract machine to execute supercombina-
tors. InProc. of FP&CA’87, pages 34–45. LNCS 274, Springer Verlag, 1987.

[4] G.Huet. Confluent Reductions: Abstract Properties and Applications to Term-Rewriting
Systems. Journal of the ACM, 27(4):797-821, October 1980.

[5] T.Johnsson.Compiling Lazy Functional Languages. PhD thesis, Chalmers Univ., Swe-
den, 1987.

[6] J.Lambek. From lambda-calculus to cartesian closed categories. In J.P.Seldin and
J.R.Hindley, editors,To H.B.Curry: Essays on Combinatory Logic, Lambda-
Calculus and Formalism. Academic Press, 1980.

[7] R.D.Lins. A New Formula for the Execution of Categorical Combinators, inProceedings
of 8th International Conference on Automated Deduction, LNCS 230, pg 89-98,
Springer Verlag, July/86.

[8] R.D.Lins. On the Efficiency of Categorical Combinators as a Rewriting System,Software
Practice & Experience, Vol 17(8), 547-559, August/87.

[9] R.D.Lins. Categorical multi-combinators. In Gilles Kahn, editor,Functional Pro-
gramming Languages and Computer Architecture, pages 60–79. Springer-Verlag,
September 1987. LNCS 274.

[10] R.D.Lins & B.O.Lira. ΓCMC: A Novel Way of Implementing Functional Languages,
Journal of Programming Languages, 1:19-39, Chapmann & Hall, January 1993.

[11] R.D.Lins, G.G.Cruz Neto & R.F.Lima. Implementing and OptimisingΓCMC, Proceed-
ings of Euromicro’94, pp.353-361, IEEE Computer Society Press, Sep. 1994.

[12] R.D.Lins, S.J.Thompson and S.Peyton Jones, On the Equivalence between CM-C and
TIM, Journal of Functional Programming, 4(1):47-63, Cambridge University Press,
January/1994.

[13] R.D.Lins & P.G.Soares. Some Performance Figures for the G-Machine and its Optimisa-
tions. Microprocessing and Microprogramming 37(1993) 163-166, North-Holland.

[14] R.D.Lins & S.J.Thompson. Implementing SASL using categorical multi-combinators.
Software — Practice and Experience, 20(8):1137–1165, November 1990.

[15] R.M.F.Lima, R.D.Lins & A.L.M.Santos. A back-end for GHC based on Categorical
Multi-Combinators. in Proceedings of ACM-SAC2004, pp 1482–1489, Cyprus,
March 2004

[16] M.A.Musicante & R.D.Lins. GMC: A Graph Multi-Combinator Machine.Microprocess-
ing and Microprogramming, 31:31–35, North-Holland, April 1991.

[17] S.J.Thompson & R.D.Lins. The Categorical Multi-Combinator Machine: CMCM,The
Computer Journal, vol 35(2): 170-176, Cambridge University Press, April 1992.

[18] P. Hartel, M.Alt, et al. Benchmarking Implementations of Functional Languages with
Pseudoknot, a Float-Intensive Benchmark,J. Functional Programming, 6(4):621-
655, 1996.

[19] D.Scott. Relating Theories of the lambda-calculus. In J.P.Seldin and J.R.Hindley, editors,
To H.B.Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism.
Academic Press, 1980.

[20] D.A. Turner. A new implementation technique for applicative languages.SP&E: 9, 1979.

